Analysis of Microbiome Data in the Presence of Excess Zeros

Abhishek Kaul1, Siddhartha Mandal2, Shyamal D. Peddada3
1Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIH), Durham, NC, United States
2Public Health Foundation of India, Gurgaon, India
3Department of Statistics, University of Haifa, Haifa, Israel

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aitchison, 1982, The statistical analysis of compositional data (with discussion), J. R. Statist. Soc. B, 44, 139, 10.1111/j.2517-6161.1982.tb01195.x

Aitchison, 1985, A general class of distributions on the simplex, J. R. Statist. Soc. B, 47, 136, 10.1111/j.2517-6161.1985.tb01341.x

Aitchison, 1986, The Statistical Analysis of Compositional Data., 10.1007/978-94-009-4109-0

Chen, 2016, A two-part mixed-effect model for analyzing longitudinal microbiome compositional data, Bioinformatics, 32, 2611, 10.1093/bioinformatics/btw308

Clemente, 2012, The Impact of the Gut Microbiota on Human Health: an Integrative View, Cell, 148, 1258, 10.1016/j.cell.2012.01.035

den Besten, 2013, The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism, J Lipid Res., 54, 2325, 10.1194/jlr.R036012

Farnan, 2014, Constrained inference in biological sciences: linear mixed effects models under constraints, PLoS ONE, 9, e84778, 10.1371/journal.pone.0084778

Grandhi, 2016, A multiple testing procedure for multi-dimensional pairwise comparisons with application to gene expression studies, BMC Bioinformatics, 17, 104, 10.1186/s12859-016-0937-5

Guo, 2010, Controlling false discoveries in multidimensional directional decisions, with applications to gene expression data on ordered categories, Biometrics, 66, 485, 10.1111/j.1541-0420.2009.01292.x

Jelsema, 2016, CLME: An R Package for Linear Mixed Effects Models under Inequality Constraints.

Li, 2015, Microbiome, metagenomics and high-dimensional compositional data analysis, Annu. Rev. Stat. Appl., 2, 73, 10.1146/annurev-statistics-010814-020351

Mai, 2011, Fecal microbiota in premature infants prior to necrotizing enterocolitis, PLoS ONE, 6, e20647, 10.1371/journal.pone.0020647

Mandal, 2015, Analysis of composition of microbiomes: a novel method for studying microbial composition, Microb. Ecol. Health Dis., 26, 1, 10.3402/mehd.v26.27663

Paulson, 2013, Differential abundance analysis for microbial marker-gene surveys, Nat. Methods, 10, 1200, 10.1038/nmeth.2658

Peddada, 2002, Classification of pixels in a noisy greyscale image of polar ice, IEEE Trans. Geosci. Remote Sensing, 40, 1879, 10.1109/TGRS.2002.802517

Peddada, 2003, Gene selection and clustering for time-course and dose-response microarray experiments using order-restricted inference, Bioinformatics, 19, 834, 10.1093/bioinformatics/btg093

Rubin, 1976, Inference and missing data, Biometrika, 63, 581, 10.1093/biomet/63.3.581

Sartor, 2012, Intestinal Microbes in Infl ammatory Bowel Diseases, Am. J. Gastroenterol. Suppl., 1, 15, 10.1038/ajgsup.2012.4

Wang, 2009, 16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis, ISME J., 3, 944, 10.1038/ismej.2009.37

Xia, 2013, A logistic normal multinomial regression model for microbiome compositional data analysis, Biometrics, 69, 1053, 10.1111/biom.12079

Yatsunenko, 2012, Human gut microbiome viewed across age and geography, Nature, 486, 222, 10.1038/nature11053