Process enhancing strategies for the reduction of Cr(VI) to Cr(III) via photocatalytic pathway
Tóm tắt
This discourse aimed at providing insight into the strategies that can be adopted to boost the process of photoreduction of Cr(VI) to Cr(III). Cr(VI) is amongst the highly detestable pollutants; thus, its removal or reduction to an innocuous and more tolerable Cr(III) has been the focus. The high promise of photocatalysis hinged on the sustainability, low cost, simplicity, and zero sludge generation. Consequently, the present dissertation provided a comprehensive review of the process enhancement procedures that have been reported for the photoreduction of Cr(VI) to Cr(III). Premised on the findings from experimental studies on Cr(VI) reductions, the factors that enhanced the process were identified, dilated, and interrogated. While the salient reaction conditions for the process optimization include the degree of ionization of reacting medium, available photogenerated electrons, reactor ambience, type of semiconductors, surface area of semiconductor, hole scavengers, quantum efficiency, and competing reactions, the relevant process variables are photocatalyst dosage, initial Cr(VI) concentration, interfering ion, and organic load. In addition, the practicability of photoreduction of Cr(VI) to Cr(III) was explored according to the potential for photocatalyst recovery, reactivation, and reuse reaction conditions and the process variables.
Tài liệu tham khảo
Aarthi T, Madras G (2008) Photocatalytic reduction of metals in presence of combustion synthesized nano-TiO2. Catal Commun 9:630–634. https://doi.org/10.1016/j.catcom.2007.07.001
Acharya R, Naik B, Parida K (2018) Cr(VI) remediation from aqueous environment through modified-TiO 2 -mediated photocatalytic reduction. Beilstein J Nanotechnol 9:1448–1470. https://doi.org/10.3762/bjnano.9.137
Ahmad W, Bashammakh AS, Al-Sibaai AA et al (2016) Trace determination of Cr(III) and Cr(VI) species in water samples via dispersive liquid-liquid microextraction and microvolume UV–Vis spectrometry. Thermodynamics, speciation study. J Mol Liq 224:1242–1248. https://doi.org/10.1016/j.molliq.2016.10.106
Akika FZ, Benamira M, Lahmar H et al (2020) Structural and optical properties of Cu-doped ZnAl2O4 and its application as photocatalyst for Cr(VI) reduction under sunlight. Surfaces and Interfaces 18:100406. https://doi.org/10.1016/j.surfin.2019.100406
Alam M, Montalvo RA (1998) Titania-assisted photoreduction of Cr(VI) to Cr(III) in aqueous media: kinetics and mechanisms. Metall Mater Trans B Process Metall Mater Process Sci 29:95–104. https://doi.org/10.1007/s11663-998-0011-4
Alam U, Khan A, Bahnemann D, Muneer M (2018) Synthesis of Co doped ZnWO4 for simultaneous oxidation of RhB and reduction of Cr(VI) under UV-light irradiation. J Environ Chem Eng 6:4885–4898. https://doi.org/10.1016/j.jece.2018.07.028
Alshehri M, Al-Marzouki F, Alshehrie A, Hafez M (2018) Synthesis, characterization and band alignment characteristics of NiO/SnO2 bulk heterojunction nanoarchitecture for promising photocatalysis applications. J Alloys Compd 757:161–168. https://doi.org/10.1016/j.jallcom.2018.05.044
Anthony ET, Lawal IA, Bankole MO et al (2020) Solar active heterojunction of p-CaFe2O4/n-ZnO for photoredox reactions. Environ Technol Innov 20:101060. https://doi.org/10.1016/j.eti.2020.101060
Athanasekou CP, Moustakas NG, Morales-Torres S et al (2015) Ceramic photocatalytic membranes for water filtration under UV and visible light. Appl Catal B Environ 178:12–19. https://doi.org/10.1016/j.apcatb.2014.11.021
Azeez F, Al-Hetlani E, Arafa M et al (2018) The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles. Sci Rep 8:7104. https://doi.org/10.1038/s41598-018-25673-5
Bansal N, Coetzee JJ, Chirwa EMN (2019) In situ bioremediation of hexavalent chromium in presence of iron by dried sludge bacteria exposed to high chromium concentration. Ecotoxicol Environ Saf 172:281–289. https://doi.org/10.1016/j.ecoenv.2019.01.094
Barrera-Díaz CE, Lugo-Lugo V, Bilyeu B (2012) A review of chemical, electrochemical and biological methods for aqueous Cr(VI) reduction. J Hazard Mater 223–224:1–12. https://doi.org/10.1016/j.jhazmat.2012.04.054
Batjes NH (1996) Total carbon and nitrogen in the soils of the world. Eur J Soil Sci 47:151–163. https://doi.org/10.1111/j.1365-2389.1996.tb01386.x
Borthakur P, Boruah PK, Das MR et al (2018) Metal free MoS2 2D sheets as a peroxidase enzyme and visible-light-induced photocatalyst towards detection and reduction of Cr(vi) ions. New J Chem 42:16919–16929. https://doi.org/10.1039/c8nj03996h
Burda C, Lou Y, Chen X et al (2003) Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett 3:1049–1051. https://doi.org/10.1021/nl034332o
Cao X, Wang S, Bi R et al (2019) Toxic effects of Cr(VI) on the bovine hemoglobin and human vascular endothelial cells: molecular interaction and cell damage. Chemosphere 222:355–363. https://doi.org/10.1016/j.chemosphere.2019.01.137
Castañeda-Juárez M, Martínez-Miranda V, Almazán-Sánchez PT et al (2019) Synthesis of TiO 2 catalysts doped with Cu, Fe, and Fe/Cu supported on clinoptilolite zeolite by an electrochemical-thermal method for the degradation of diclofenac by heterogeneous photocatalysis. J Photochem Photobiol A Chem 380:111834. https://doi.org/10.1016/j.jphotochem.2019.04.045
Cates EL (2017) Photocatalytic water treatment: so where are we going with this? Environ Sci Technol 51:757–758. https://doi.org/10.1021/acs.est.6b06035
Caudillo-Flores U, Muñoz-Batista MJ, Hungría AB et al (2019) Toluene and styrene photo-oxidation quantum efficiency: comparison between doped and composite tungsten-containing anatase-based catalysts. Appl Catal B Environ 245:49–61. https://doi.org/10.1016/j.apcatb.2018.12.032
Challagulla S, Nagarjuna R, Ganesan R, Roy S (2016) Acrylate-based polymerizable sol-gel synthesis of magnetically recoverable TiO2 supported Fe3O4 for Cr(VI) photoreduction in aerobic atmosphere. ACS Sustain Chem Eng 4:974–982. https://doi.org/10.1021/acssuschemeng.5b01055
Chang MJ, Cui WN, Wang H et al (2019) Recoverable magnetic CoFe 2 O 4 /BiOI nanofibers for efficient visible light photocatalysis. Colloids Surfaces A Physicochem Eng Asp 562:127–135. https://doi.org/10.1016/j.colsurfa.2018.11.016
Chen A, Xia S, Pan X et al (2018) Easily removable visible-light-driven photocatalyst of nickel modified SnS2 nanosheets for reduction of Cr(VI). J Alloys Compd 735:1314–1318. https://doi.org/10.1016/j.jallcom.2017.10.248
Cheng Q, Wang C, Doudrick K, Chan CK (2015) Hexavalent chromium removal using metal oxide photocatalysts. Appl Catal B Environ 176–177:740–748. https://doi.org/10.1016/j.apcatb.2015.04.047
Chenthamarakshan CR, Rajeshwar K, Wolfrum EJ (2000) Heterogeneous photocatalytic reduction of Cr(VI) in UV-irradiated titania suspensions: effect of protons, ammonium ions, and other interfacial aspects. Langmuir 16:2715–2721. https://doi.org/10.1021/la9911483
Coetzee JJ, Bansal N, Chirwa EMN (2018) Chromium in environment, its toxic effect from chromite-mining and ferrochrome industries, and its possible bioremediation. Expo Heal 1–12. https://doi.org/10.1007/s12403-018-0284-z
Colón G, Hidalgo MC, Navío JA (2001) Photocatalytic deactivation of commercial TiO2 samples during simultaneous photoreduction of Cr(VI) and photooxidation of salicylic acid. J Photochem Photobiol A Chem 138:79–85. https://doi.org/10.1016/S1010-6030(00)00372-5
Cortes MALRM, Hamilton JWJ, Sharma PK et al (2019) Formal quantum efficiencies for the photocatalytic reduction of CO 2 in a gas phase batch reactor. Catal Today 326:75–81. https://doi.org/10.1016/j.cattod.2018.10.047
Cui Y, Chen WF, Bastide A et al (2019) Effect of precursor dopant valence state on the photocatalytic performance of Mo3+- or Mo5+-Doped TiO2 thin films. J Phys Chem Solids 126:314–321. https://doi.org/10.1016/j.jpcs.2018.11.018
Dadigala R, Bandi R, Gangapuram BR et al (2019) Fabrication of novel 1D/2D V2O5/g-C3N4 composites as Z-scheme photocatalysts for CR degradation and Cr (VI) reduction under sunlight irradiation. J Environ Chem Eng 7:102822. https://doi.org/10.1016/j.jece.2018.102822
Daya Mani A, Rama Raju B, Xanthopoulos N et al (2013) Effect of fuels on combustion synthesis of TiO2 - towards efficient photocatalysts for methylene blue oxidation and Cr (VI) reduction under natural sunlight. Chem Eng J 228:545–553. https://doi.org/10.1016/j.cej.2013.05.025
Del Pianta D, Frayret J, Gleyzes C et al (2018) Determination of the chromium(III) reduction mechanism during chromium electroplating. Electrochim Acta 284:234–241. https://doi.org/10.1016/j.electacta.2018.07.114
Ding X, Xiao D, Ji L et al (2018) Simple fabrication of Fe3O4/C/g-C3N4 two-dimensional composite by hydrothermal carbonization approach with enhanced photocatalytic performance under visible light. Catal Sci Technol 8:3484–3492. https://doi.org/10.1039/c8cy00698a
Djellabi R, Ghorab MF (2015) Photoreduction of toxic chromium using TiO2-immobilized under natural sunlight: effects of some hole scavengers and process parameters. Desalin Water Treat 55:1900–1907. https://doi.org/10.1080/19443994.2014.927335
Djellabi R, Ghorab FM, Nouacer S et al (2016) Cr(VI) photocatalytic reduction under sunlight followed by Cr(III) extraction from TiO2 surface. Mater Lett 176:106–109. https://doi.org/10.1016/j.matlet.2016.04.090
Djellabi R, Yang B, Wang Y et al (2019a) Carbonaceous biomass-titania composites with Ti–O–C bonding bridge for efficient photocatalytic reduction of Cr(VI) under narrow visible light. Chem Eng J 366:172–180. https://doi.org/10.1016/j.cej.2019.02.035
Djellabi R, Yang B, Wang Y et al (2019b) Carbonaceous biomass-titania composites with TiOC bonding bridge for efficient photocatalytic reduction of Cr(VI) under narrow visible light. Chem Eng J 366:172–180. https://doi.org/10.1016/j.cej.2019.02.035
Djellabi R, Zhao X, Bianchi CL et al (2020) Visible light responsive photoactive polymer supported on carbonaceous biomass for photocatalytic water remediation. J Clean Prod 269:122286. https://doi.org/10.1016/j.jclepro.2020.122286
Djellabi R, Zhao X, Ordonez MF et al (2021) Comparison of the photoactivity of several semiconductor oxides in floating aerogel and suspension systems towards the reduction of Cr(VI) under visible light. Chemosphere 281:130839. https://doi.org/10.1016/j.chemosphere.2021.130839
Djurišić AB, He Y, Ng AMC (2020) Visible-light photocatalysts: prospects and challenges. APL Mater 8:30903. https://doi.org/10.1063/1.5140497
Dong C, Ji J, Yang Z et al (2019a) Research progress of photocatalysis based on highly dispersed titanium in mesoporous SiO 2. Chinese Chem Lett 30:853–862. https://doi.org/10.1016/j.cclet.2019.03.020
Dong R, Zhong Y, Chen D et al (2019b) Morphology-controlled fabrication of CNT@MoS2/SnS2 nanotubes for promoting photocatalytic reduction of aqueous Cr(VI) under visible light. J Alloys Compd 784:282–292. https://doi.org/10.1016/j.jallcom.2019.01.032
Dozzi MV, Saccomanni A, Selli E (2012) Cr(VI) photocatalytic reduction: Effects of simultaneous organics oxidation and of gold nanoparticles photodeposition on TiO 2. J Hazard Mater 211–212:188–195. https://doi.org/10.1016/j.jhazmat.2011.09.038
Du Y, Wang X, Wu J et al (2018) Adsorption and photoreduction of Cr(VI) via diatomite modified by Nb2O5 nanorods. Particuology 40:123–130. https://doi.org/10.1016/j.partic.2017.11.005
Emadian SS, Ghorbani M, Bakeri G (2020) Magnetically separable CoFe2O4/ZrO2 nanocomposite for the photocatalytic reduction of hexavalent chromium under visible light irradiation. Synth Met 267:116470. https://doi.org/10.1016/j.synthmet.2020.116470
Fang M, Zhu M, Zhang K et al (2018) FeOOH nanorods array and its application in the photoreduction of Cr(VI). Mater Lett 231:76–79. https://doi.org/10.1016/j.matlet.2018.08.022
Finčur NL, Krstić JB, Šibul FS et al (2017) Removal of alprazolam from aqueous solutions by heterogeneous photocatalysis: Influencing factors, intermediates, and products. Chem Eng J 307:1105–1115. https://doi.org/10.1016/j.cej.2016.09.008
Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. https://doi.org/10.1038/238037a0
Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev 1:1–21. https://doi.org/10.1016/S1389-5567(00)00002-2
Gao X, Liu X, Zhu Z et al (2016a) Enhanced photoelectrochemical and photocatalytic behaviors of MFe 2 O 4 (M = Ni Co, Zn and Sr) modified TiO 2 nanorod arrays. Sci Rep 6:1–11. https://doi.org/10.1038/srep30543
Gao Y, Zhang Z, Li S et al (2016b) Insights into the mechanism of heterogeneous activation of persulfate with a clay/iron-based catalyst under visible LED light irradiation. Appl Catal B Environ 185:22–30. https://doi.org/10.1016/j.apcatb.2015.12.002
Genz A, Baumgarten B, Goernitz M, Jekel M (2008) NOM removal by adsorption onto granular ferric hydroxide: equilibrium, kinetics, filter and regeneration studies. Water Res 42:238–248. https://doi.org/10.1016/j.watres.2007.07.005
Gherbi R, Nasrallah N, Amrane A et al (2011) Photocatalytic reduction of Cr(VI) on the new hetero-system CuAl2O4/TiO2. J Hazard Mater 186:1124–1130. https://doi.org/10.1016/j.jhazmat.2010.11.105
Ghosh A, Mitra M, Banerjee D, Mondal A (2016) Facile electrochemical deposition of Cu7Te4 thin films with visible-light driven photocatalytic activity and thermoelectric performance. RSC Adv 6:22803–22811. https://doi.org/10.1039/c6ra00345a
Ghosh R, Sahu A, Pushpavanam S (2019) Removal of trace hexavalent chromium from aqueous solutions by ion foam fractionation. J Hazard Mater 367:589–598. https://doi.org/10.1016/j.jhazmat.2018.12.105
Ghugal SG, Umare SS, Sasikala R (2015) Enhanced photocatalytic activity of TiO2 assisted by Nb, N and S multidopants. Mater Res Bull 61:298–305. https://doi.org/10.1016/j.materresbull.2014.10.006
Giannakas AE, Seristatidou E, Deligiannakis Y, Konstantinou I (2013) Photocatalytic activity of N-doped and N-F co-doped TiO2 and reduction of chromium(VI) in aqueous solution: An EPR study. Appl Catal B Environ 132–133:460–468. https://doi.org/10.1016/j.apcatb.2012.12.017
Hackbarth FV, Maass D, de Souza AAU et al (2016) Removal of hexavalent chromium from electroplating wastewaters using marine macroalga Pelvetia canaliculata as natural electron donor. Chem Eng J 290:477–489. https://doi.org/10.1016/j.cej.2016.01.070
Hammond C, Padovan D, Tarantino G (2018) Porous metallosilicates for heterogeneous, liquid-phase catalysis: perspectives and pertaining challenges. R Soc Open Sci 5:171315. https://doi.org/10.1098/rsos.171315
Hasija V, Raizada P, Sudhaik A et al (2019) Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: a review. Appl Mater Today 15:494–524. https://doi.org/10.1016/j.apmt.2019.04.003
He J, Ichinose I, Kunitake T et al (2003) Facile fabrication of Ag-Pd bimetallic nanoparticles in ultrathin TiO 2-gel films: nanoparticle morphology and catalytic activity. J Am Chem Soc 125:11034–11040. https://doi.org/10.1021/ja035970b
He W, Sun Y, Jiang G et al (2018) Defective Bi 4 MoO 9 /Bi metal core/shell heterostructure: enhanced visible light photocatalysis and reaction mechanism. Appl Catal B Environ 239:619–627. https://doi.org/10.1016/j.apcatb.2018.08.064
He Q, Si S, Song L et al (2019) Refractory petrochemical wastewater treatment by K2S2O8 assisted photocatalysis. Saudi J Biol Sci 26:849–853. https://doi.org/10.1016/j.sjbs.2017.07.009
Holger G (2014) Solar heterogeneous photocatalytic oxidation for water and wastewater treatment: problems and challenges. J Adv J Chem Eng 4:2–4. https://doi.org/10.4172/2090-4568.1000108
Hong S, Ratpukdi T, Sungthong B et al (2019) A sustainable solution for removal of glutaraldehyde in saline water with visible light photocatalysis. Chemosphere 220:1083–1090. https://doi.org/10.1016/j.chemosphere.2018.12.216
Hou X, Wang Z, Fang C et al (2019) A facile synthesis of supported amorphous iron oxide with high performance for Cr(VI) removal from aqueous solution under visible light irradiation. J Mater Sci Technol 35:323–329. https://doi.org/10.1016/j.jmst.2018.09.061
Hu X, Wang W, Xie G et al (2019a) Ternary assembly of g-C3N4/graphene oxide sheets /BiFeO3 heterojunction with enhanced photoreduction of Cr(VI) under visible-light irradiation. Chemosphere 216:733–741. https://doi.org/10.1016/j.chemosphere.2018.10.181
Hu Y, Meng Q, Li C et al (2019b) Template-free synthesis of Na0.5Bi2.5Ta2O9/Bi4TaO8Cl nano-heterostructures: via a one-pot molten salt reaction for efficient photocatalysis. J Mater Chem C 7:2936–2942. https://doi.org/10.1039/c8tc06340k
Huang Z, Li K, Yan L et al (2019) Fabrication of bio-based acidic nonmetals co-doped TiO2 with core/shell structure and their unique photocatalytic performance for the rapid reduction of aqueous Cr(VI) under original pH and visible-light conditions. Appl Catal A Gen 575:142–151. https://doi.org/10.1016/j.apcata.2019.02.020
Idris A, Hassan N, Rashid R, Ngomsik A-F (2011) Kinetic and regeneration studies of photocatalytic magnetic separable beads for chromium (VI) reduction under sunlight. J Hazard Mater 186:629–635. https://doi.org/10.1016/j.jhazmat.2010.11.101
Izbicki JA, Wright MT, Seymour WA et al (2015) Cr(VI) occurrence and geochemistry in water from public-supply wells in California. Appl Geochemistry 63:203–217. https://doi.org/10.1016/j.apgeochem.2015.08.007
Jamil S, Loganathan P, Listowski A et al (2019) Simultaneous removal of natural organic matter and micro-organic pollutants from reverse osmosis concentrate using granular activated carbon. Water Res 155:106–114. https://doi.org/10.1016/j.watres.2019.02.016
Jiang B, Guo J, Wang Z et al (2015) A green approach towards simultaneous remediations of chromium(VI) and arsenic(III) in aqueous solution. Chem Eng J 262:1144–1151. https://doi.org/10.1016/j.cej.2014.10.064
Jiang XH, Xing QJ, Luo XB et al (2018) Simultaneous photoreduction of Uranium(VI) and photooxidation of Arsenic(III) in aqueous solution over g-C 3 N 4 /TiO 2 heterostructured catalysts under simulated sunlight irradiation. Appl Catal B Environ 228:29–38. https://doi.org/10.1016/j.apcatb.2018.01.062
Jiang B, Gong Y, Gao J et al (2019) The reduction of Cr(VI) to Cr(III) mediated by environmentally relevant carboxylic acids: state-of-the-art and perspectives. J Hazard Mater 365:205–226. https://doi.org/10.1016/j.jhazmat.2018.10.070
Jiao Z, Zhang J, Liu Z, Ma Z (2019) Ag/AgCl/Ag2MoO4 composites for visible-light-driven photocatalysis. J Photochem Photobiol A Chem 371:67–75. https://doi.org/10.1016/j.jphotochem.2018.11.003
Jing L, Xu Y, Xie M et al (2019) Three dimensional polyaniline/MgIn 2 S 4 nanoflower photocatalysts accelerated interfacial charge transfer for the photoreduction of Cr(VI), photodegradation of organic pollution and photocatalytic H 2 production. Chem Eng J 360:1601–1612. https://doi.org/10.1016/j.cej.2018.10.214
Kabir-ud-Din HK, Khan Z (2000) Unusual rate inhibition of manganese(II) assisted oxidation of citric acid by chromium(VI) in the presence of ionic micelles. Transit Met Chem 25:478–484. https://doi.org/10.1023/A:1007010306107
Karthik P, Vinoth R, Babu SG et al (2015) Synthesis of highly visible light active TiO2-2-naphthol surface complex and its application in photocatalytic chromium(vi) reduction. RSC Adv 5:39752–39759. https://doi.org/10.1039/c5ra03831f
Khalil LB, Mourad WE, Rophael MW (1998) Photocatalytic reduction of environmental pollutant Cr(VI) over some semiconductors under UV/visible light illumination. Appl Catal B Environ 17:267–273. https://doi.org/10.1016/S0926-3373(98)00020-4
Khan NA, Yoo DK, Jhung SH (2018) Polyaniline-encapsulated metal–organic framework MIL-101: adsorbent with record-high adsorption capacity for the removal of both basic quinoline and neutral indole from liquid fuel. ACS Appl Mater Interfaces 10:35639–35646. https://doi.org/10.1021/acsami.8b13256
Kim D, Dai J, Park YH et al (2016) Activation of epidermal growth factor receptor/p38/hypoxia-inducible factor-1α is pivotal for angiogenesis and tumorigenesis of malignantly transformed cells induced by hexavalent chromium. J Biol Chem 291:16271–16281. https://doi.org/10.1074/jbc.M116.715797
Kolobova N, Pestryakov N, Bogdanchikova N, Cortés Corberán V (2019) Silver catalysts for liquid-phase oxidation of alcohols in green chemistry: challenges and outlook. Catal Today 81–88. https://doi.org/10.1016/j.cattod.2018.06.030
Kretschmer I, Senn AM, Meichtry JM et al (2019) Photocatalytic reduction of Cr(VI) on hematite nanoparticles in the presence of oxalate and citrate. Appl Catal B Environ 242:218–226. https://doi.org/10.1016/j.apcatb.2018.09.059
Kumar KVA, Amanchi SR, Sreedhar B et al (2017) Phenol and Cr(VI) degradation with Mn ion doped ZnO under VIsible light photocatalysis. RSC Adv 7:43030–43039. https://doi.org/10.1039/c7ra08172c
Kush P, Deori K, Kumar A, Deka S (2015) Efficient hydrogen/oxygen evolution and photocatalytic dye degradation and reduction of aqueous Cr(VI) by surfactant free hydrophilic Cu2ZnSnS4 nanoparticles. J Mater Chem A 3:8098–8106. https://doi.org/10.1039/c4ta06551d
Lahmar H, Rekhila G, Trari M, Bessekhouad Y (2015) HCrO4-reduction on the novel heterosystem La2CuO4/SnO2 under solar light. Environ Prog Sustain Energy 34:744–750. https://doi.org/10.1002/ep.12058
Lee YM, Nung WM, Lai CH (2010) Fabrication and characterization of ZnO branched nanorods and ZnO/NiO heterojunction electrodes by chemical solution method. Phys E Low-Dimensional Syst Nanostructures 42:2289–2294. https://doi.org/10.1016/j.physe.2010.05.004
Leghari SAK, Sajjad S, Zhang J (2013) Large mesoporous micro-spheres of WO3/TiO2 composite with enhanced visible light photo activity. RSC Adv 3:15354–15361. https://doi.org/10.1039/c3ra41782d
Lei XF, Xue XX, Yang H (2014) Preparation and characterization of Ag-doped TiO 2 nanomaterials and their photocatalytic reduction of Cr(VI) under visible light. Appl Surf Sci 321:396–403. https://doi.org/10.1016/j.apsusc.2014.10.045
Lei XF, Xue XX, Yang H et al (2015) Visible light-responded C, N and S co-doped anatase TiO2 for photocatalytic reduction of Cr(VI). J Alloys Compd 646:541–549. https://doi.org/10.1016/j.jallcom.2015.04.233
Lei XF, Chen C, Li X et al (2016) Characterization and photocatalytic performance of la and C co-doped anatase TiO2 for photocatalytic reduction of Cr(VI). Sep Purif Technol 161:8–15. https://doi.org/10.1016/j.seppur.2016.01.030
Lei XF, Zhang ZN, Wu ZX et al (2017) Synthesis and characterization of Fe, N and C tri-doped polymorphic TiO 2 and the visible light photocatalytic reduction of Cr(VI). Sep Purif Technol 174:66–74. https://doi.org/10.1016/j.seppur.2016.09.039
Li F, Gangal M, Juliano C et al (2002) Evidence for an internal entropy contribution to phosphoryl transfer: a study of domain closure, backbone flexibility, and the catalytic cycle of cAMP-dependent protein kinase. J Mol Biol 315:459–469. https://doi.org/10.1006/jmbi.2001.5256
Li D, Ohashi N, Hishita S et al (2005) Origin of visible-light-driven photocatalysis: a comparative study on N/F-doped and N-F-codoped TiO 2 powders by means of experimental characterizations and theoretical calculations. J Solid State Chem 178:3293–3302. https://doi.org/10.1016/j.jssc.2005.08.008
Li H, Wu T, Cai B et al (2015) Efficiently photocatalytic reduction of carcinogenic contaminant Cr (VI) upon robust AgCl: Ag hollow nanocrystals. Appl Catal B Environ 164:344–351. https://doi.org/10.1016/j.apcatb.2014.09.049
Li Y, Liu Z, Wu Y et al (2018) Carbon dots-TiO2 nanosheets composites for photoreduction of Cr(VI) under sunlight illumination: favorable role of carbon dots. Appl Catal B Environ 224:508–517. https://doi.org/10.1016/j.apcatb.2017.10.023
Li K, Huang Z, Zhu S et al (2019) Removal of Cr(VI) from water by a biochar-coupled g-C3N4 nanosheets composite and performance of a recycled photocatalyst in single and combined pollution systems. Appl Catal B Environ 243:386–396. https://doi.org/10.1016/j.apcatb.2018.10.052
Li Y, Zhang J, Zhan C et al (2020) Facile synthesis of TiO2/CNC nanocomposites for enhanced Cr(VI) photoreduction: synergistic roles of cellulose nanocrystals. Carbohydr Polym 233:115838. https://doi.org/10.1016/j.carbpol.2020.115838
Li C, Guo Y, Tang D et al (2021) Optimizing electron structure of Zn-doped AgFeO2 with abundant oxygen vacancies to boost photocatalytic activity for Cr(VI) reduction and organic pollutants decomposition: DFT insights and experimental. Chem Eng J 411:128515. https://doi.org/10.1016/j.cej.2021.128515
Lima CGS, Moreira NM, Paixão MW, Corrêa AG (2019) Heterogenous green catalysis: application of zeolites on multicomponent reactions. Curr Opin Green Sustain Chem 15:7–12. https://doi.org/10.1016/j.cogsc.2018.07.006
Lin Y, Li D, Hu J et al (2012) Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite. J Phys Chem C 116:5764–5772. https://doi.org/10.1021/jp211222w
Liriano-Jorge C, Sohmen U, Özkan A, et al (2014) TiO2 photocatalyst nanoparticle separation: flocculation in different matrices and use of powdered activated carbon as a precoat in low-cost fabric filtration. https://doi.org/10.15480/882.1238
Litter MI (1999) Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems. Appl Catal B Environ 23:89–114. https://doi.org/10.1016/S0926-3373(99)00069-7
Liu SX (2005) Removal of copper (VI) from aqueous solution by Ag/TiO2 photocatalysis. Bull Environ Contam Toxicol 74:706–714. https://doi.org/10.1007/s00128-005-0640-0
Liu T, Rao P, Lo IMC (2009) Influences of humic acid, bicarbonate and calcium on Cr(VI) reductive removal by zero-valent iron. Sci Total Environ 407:3407–3414. https://doi.org/10.1016/j.scitotenv.2009.01.043
Liu Y, Hu X, Wang H et al (2013) Photoreduction of Cr(VI) from acidic aqueous solution using TiO2-impregnated glutaraldehyde-crosslinked alginate beads and the effects of Fe(III) ions. Chem Eng J 226:131–138. https://doi.org/10.1016/j.cej.2013.04.048
Liu B, Zhao X, Terashima C et al (2014) Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems. Phys Chem Chem Phys 16:8751–8760
Liu L, Luo C, Xiong J et al (2017a) Reduced graphene oxide (rGO) decorated TiO 2 microspheres for visible-light photocatalytic reduction of Cr(VI). J Alloys Compd 690:771–776. https://doi.org/10.1016/j.jallcom.2016.08.197
Liu R, Zhu X, Chen B (2017b) A new insight of graphene oxide-Fe(III) complex photochemical behaviors under visible light irradiation. Sci Rep 7:1–11. https://doi.org/10.1038/srep40711
Liu J, Wang Y, Ma J et al (2019a) A review on bidirectional analogies between the photocatalysis and antibacterial properties of ZnO. J Alloys Compd 783:898–918. https://doi.org/10.1016/j.jallcom.2018.12.330
Liu W, Jin L, Xu J et al (2019b) Insight into pH dependent Cr(VI) removal with magnetic Fe3S4. Chem Eng J 359:564–571. https://doi.org/10.1016/j.cej.2018.11.192
Liu Y, Mi X, Wang J et al (2019c) Two-dimensional SnS2 nanosheets exfoliated from an inorganic-organic hybrid with enhanced photocatalytic activity towards Cr(vi) reduction. Inorg Chem Front 6:948–954. https://doi.org/10.1039/c9qi00020h
Liu Y, Shen S, Zhang J et al (2019d) Cu 2–x Se/CdS composite photocatalyst with enhanced visible light photocatalysis activity. Appl Surf Sci 478:762–769. https://doi.org/10.1016/j.apsusc.2019.02.010
Liu J, Liu Y, Liu N, et al (2015) Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science (80- ) 347:970–974. https://doi.org/10.1126/science.aaa3145
Loeb SK, Alvarez PJJ, Brame JA et al (2019) The technology horizon for photocatalytic water treatment: sunrise or sunset? Environ Sci Technol 53:2937–2947. https://doi.org/10.1021/acs.est.8b05041
Lofrano G, Libralato G, Casaburi A et al (2018) Municipal wastewater spiramycin removal by conventional treatments and heterogeneous photocatalysis. Sci Total Environ 624:461–469. https://doi.org/10.1016/j.scitotenv.2017.12.145
López-Alonso M, Miranda M, Benedito JL et al (2016) Essential and toxic trace element concentrations in different commercial veal cuts in Spain. Meat Sci 121:47–52. https://doi.org/10.1016/j.meatsci.2016.05.013
Luo Z, Qu L, Jia J et al (2018) TiO2/EDTA-rich carbon composites: synthesis, characterization and visible-light-driven photocatalytic reduction of Cr(VI). Chinese Chem Lett 29:547–550. https://doi.org/10.1016/j.cclet.2017.09.025
Luo Y, Cao L, Feng L et al (2019) Synthesis, characterization and photocatalytic properties of nanoscale pyrochlore type Bi 2 Zr 2 O 7. Mater Sci Eng B Solid-State Mater Adv Technol 240:133–139. https://doi.org/10.1016/j.mseb.2019.01.017
Luo S, Xiao Y, Yang L, et al (2011) Simultaneous detoxification of hexavalent chromium and acid orange 7 by a novel Au/TiO2 heterojunction composite nanotube arrays. Elsevier B.V.
Lv Z, Zhou H, Liu H et al (2017) Controlled assemble of oxygen vacant CeO2@Bi2WO6 hollow magnetic microcapsule heterostructures for visible-light photocatalytic activity. Chem Eng J 330:1297–1305. https://doi.org/10.1016/j.cej.2017.08.074
Lyu J, Hu Z, Li Z, Ge M (2019a) Removal of tetracycline by BiOBr microspheres with oxygen vacancies: combination of adsorption and photocatalysis. J Phys Chem Solids 129:61–70. https://doi.org/10.1016/j.jpcs.2018.12.041
Lyu W, Wu J, Zhang W et al (2019b) Easy separated 3D hierarchical coral-like magnetic polyaniline adsorbent with enhanced performance in adsorption and reduction of Cr(VI) and immobilization of Cr(III). Chem Eng J 363:107–119. https://doi.org/10.1016/j.cej.2019.01.109
Malkhasian AYS, Mohamed RM (2015) Environmental remediation of Cr(VI) solutions by photocatalytic reduction using Ag-Er(OH)3 nanocomposite. J Alloys Compd 632:735–740. https://doi.org/10.1016/j.jallcom.2015.01.293
Mamulová Kutláková K, Tokarský J, Kovář P et al (2011) Preparation and characterization of photoactive composite kaolinite/TiO2. J Hazard Mater 188:212–220. https://doi.org/10.1016/j.jhazmat.2011.01.106
Marinho BA, Cristóvão RO, Djellabi R et al (2017a) Photocatalytic reduction of Cr(VI) over TiO2-coated cellulose acetate monolithic structures using solar light. Appl Catal B Environ 203:18–30. https://doi.org/10.1016/j.apcatb.2016.09.061
Marinho BA, Djellabi R, Cristóvão RO et al (2017b) Intensification of heterogeneous TiO2 photocatalysis using an innovative micro–meso-structured-reactor for Cr(VI) reduction under simulated solar light. Chem Eng J 318:76–88. https://doi.org/10.1016/j.cej.2016.05.077
Martínez SA, Rodríguez MG, Aguilar R, Soto G (2004) Removal of chromium hexavalent from rinsing chromating waters electrochemical reduction in a laboratory pilot plant. Water Sci Technol 49:115–122. https://doi.org/10.2166/wst.2004.0034
Meng X, Zhang G, Li N (2017) Bi24Ga2O39 for visible light photocatalytic reduction of Cr(VI): controlled synthesis, facet-dependent activity and DFT study. Chem Eng J 314:249–256. https://doi.org/10.1016/j.cej.2016.12.090
Meng Q, Zhou Y, Chen G et al (2018) Integrating both homojunction and heterojunction in QDs self-decorated Bi2MoO6/BCN composites to achieve an efficient photocatalyst for Cr(VI) reduction. Chem Eng J 334:334–343. https://doi.org/10.1016/j.cej.2017.07.134
Muñoz-Batista MJ, Kubacka A, Hungría AB, Fernández-García M (2015) Heterogeneous photocatalysis: light-matter interaction and chemical effects in quantum efficiency calculations. J Catal 330:154–166. https://doi.org/10.1016/j.jcat.2015.06.021
Muthumareeswaran MR, Alhoshan M, Agarwal GP (2017) Ultrafiltration membrane for effective removal of chromium ions from potable water. Sci Rep 7:1–12. https://doi.org/10.1038/srep41423
Nagarjuna R, Challagulla S, Ganesan R, Roy S (2017a) High rates of Cr(VI) photoreduction with magnetically recoverable nano-Fe3O4@Fe2O3/Al2O3 catalyst under visible light. Chem Eng J 308:59–66. https://doi.org/10.1016/j.cej.2016.09.044
Nagarjuna R, Challagulla S, Sahu P et al (2017b) Polymerizable sol–gel synthesis of nano-crystalline WO3 and its photocatalytic Cr(VI) reduction under visible light. Adv Powder Technol 28:3265–3273. https://doi.org/10.1016/j.apt.2017.09.030
Naimi-Joubani M, Shirzad-Siboni M, Yang JK et al (2015) Photocatalytic reduction of hexavalent chromium with illuminated ZnO/TiO2 composite. J Ind Eng Chem 22:317–323. https://doi.org/10.1016/j.jiec.2014.07.025
Nanda B, Pradhan AC, Parida KM (2017) Fabrication of mesoporous CuO/ZrO2-MCM-41 nanocomposites for photocatalytic reduction of Cr(VI). Chem Eng J 316:1122–1135. https://doi.org/10.1016/j.cej.2016.11.080
Nasrallah N, Kebir M, Koudri Z, Trari M (2011) Photocatalytic reduction of Cr(VI) on the novel hetero-system CuFe2O4/CdS. J Hazard Mater 185:1398–1404. https://doi.org/10.1016/j.jhazmat.2010.10.061
Navı́o JA, Colón G, Trillas M, et al (1998) Heterogeneous photocatalytic reactions of nitrite oxidation and Cr(VI) reduction on iron-doped titania prepared by the wet impregnation method. Appl Catal B Environ 16:187–196. https://doi.org/10.1016/S0926-3373(97)00073-8
Nezar S, Cherifi Y, Barras A et al (2019) Efficient reduction of Cr(VI) under visible light irradiation using CuS nanostructures. Arab J Chem 12:215–224. https://doi.org/10.1016/j.arabjc.2018.01.002
Ngo AB, Nguyen HL, Hollmann D (2018) Criticial assessment of the photocatalytic reduction of Cr(Vi) over Au/TiO 2. Catalysts 8:606. https://doi.org/10.3390/catal8120606
Nosaka Y, Natsui H, Sasagawa M, Nosaka AY (2006) Electron spin resonance studies on the oxidation mechanism of sterically hindered cyclic amines in TiO2 photocatalytic systems. J Phys Chem B 110:12993–12999. https://doi.org/10.1021/jp061765h
Ola O, Maroto-Valer MM (2015) Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. J Photochem Photobiol C Photochem Rev 24:16–42
Oladoja NA, Ololade IA, Olaseni S et al (2012) Synthesis of nano calcium oxide from a Gastropod shell and the performance evaluation for Cr (VI) removal from aqua system. Ind Eng Chem Res 51:639–648. https://doi.org/10.1021/ie201189z
Oladoja NA, Ololade IA, Alimi OA et al (2013) Iron incorporated rice husk silica as a sorbent for hexavalent chromium attenuation in aqueous system. Chem Eng Res Des 91:2691–2702. https://doi.org/10.1016/j.cherd.2013.03.001
Oladoja NA, Anthony ET, Ololade IA et al (2018) Self-propagation combustion method for the synthesis of solar active Nano Ferrite for Cr(VI) reduction in aqua system. J Photochem Photobiol A Chem 353:229–239. https://doi.org/10.1016/j.jphotochem.2017.11.026
Oladoja NA, Bello GA, Helmreich B, et al (2019) Defluoridation efficiency of a green composite reactive material derived from lateritic soil and gastropod shell. Sustain Chem Pharm 12: https://doi.org/10.1016/j.scp.2019.100131
Oliveira C, Lima DLD, Silva CP et al (2019) Photodegradation of sulfamethoxazole in environmental samples: the role of pH, organic matter and salinity. Sci Total Environ 648:1403–1410. https://doi.org/10.1016/j.scitotenv.2018.08.235
Ololade IA, Adeola AO, Oladoja NA, et al (2018) In-situ modification of soil organic matter towards adsorption and desorption of phenol and its chlorinated derivatives
Orozco-Hernández L, Gómez-Oliván LM, Elizalde-Velázquez A et al (2019) 17-β-Estradiol: significant reduction of its toxicity in water treated by photocatalysis. Sci Total Environ 669:955–963. https://doi.org/10.1016/j.scitotenv.2019.03.190
Oskoei V, Dehghani MH, Nazmara S et al (2016) Removal of humic acid from aqueous solution using UV/ZnO nano-photocatalysis and adsorption. J Mol Liq 213:374–380. https://doi.org/10.1016/j.molliq.2015.07.052
Pan B, Li H, Lang D, Xing B (2019) Environmentally persistent free radicals: occurrence, formation mechanisms and implications. Environ Pollut 248:320–331. https://doi.org/10.1016/j.envpol.2019.02.032
Pang Y, Kong L, Chen D, Yuvaraja G (2019) Rapid Cr(VI) reduction in aqueous solution using a novel microwave-based treatment with MoS 2 -MnFe 2 O 4 composite. Appl Surf Sci 471:408–416. https://doi.org/10.1016/j.apsusc.2018.11.180
Pawar RC, Lee CS (2015) Heterogeneous nanocomposite-photocatalysis for water purification
Pechancová R, Pluháček T, Milde D (2019) Recent advances in chromium speciation in biological samples. Spectrochim Acta - Part B at Spectrosc 152:109–122. https://doi.org/10.1016/j.sab.2018.12.008
Peng Y, Mao YG, Kan PF et al (2018) Controllable synthesis and photoreduction performance towards Cr(vi) of BiOCl microrods with exposed (110) crystal facets. New J Chem 42:16911–16918. https://doi.org/10.1039/c8nj03323d
Pettine M, Campanella L, Millero FJ (2002) Reduction of hexavalent chromium by H2O2 in acidic solutions. Environ Sci Technol 36:901–907. https://doi.org/10.1021/es010086b
Praveen R, Ramaraj R (2016) Chemically reduced graphene oxide-P25-Au nanocomposite materials and their photoelectrocatalytic and photocatalytic applications. Photochem Photobiol Sci 15:1310–1317. https://doi.org/10.1039/c6pp00118a
Pu S, Hou Y, Chen H, et al (2018) An efficient photocatalyst for fast reduction of Cr(VI) by ultra-trace silver enhanced titania in aqueous solution. Catalysts 8
Qian R, Zong H, Schneider J et al (2019) Charge carrier trapping, recombination and transfer during TiO2 photocatalysis: an overview. Catal Today 335:78–90. https://doi.org/10.1016/j.cattod.2018.10.053
Qin G, McGuire MJ, Blute NK et al (2005) Hexavalent chromium removal by reduction with ferrous sulfate, coagulation, and filtration: a pilot-scale study. Environ Sci Technol 39:6321–6327. https://doi.org/10.1021/es050486p
Qin G, Sun X, Xiao Y, Liu F (2019) Rational fabrication of plasmonic responsive N-Ag-TiO2-ZnO nanocages for photocatalysis under visible light. J Alloys Compd 772:885–899. https://doi.org/10.1016/j.jallcom.2018.09.190
Rafati L, Mahvi AH, Asgari AR, Hosseini SS (2010) Removal of chromium (VI) from aqueous solutions using lewatit fo36 nano ion exchange resin. Int J Environ Sci Technol 7:147–156. https://doi.org/10.1007/BF03326126
Raja A, Rajasekaran P, Vishnu B et al (2020) Fabrication of effective visible-light-driven ternary Z-scheme ZnO-Ag-BiVO4 heterostructured photocatalyst for hexavalent chromium reduction. Sep Purif Technol 252:117446. https://doi.org/10.1016/j.seppur.2020.117446
Ramya V, Murugan D, Lajapathirai C, Sivasamy A (2018) Activated carbon (prepared from secondary sludge biomass) supported semiconductor zinc oxide nanocomposite photocatalyst for reduction of Cr(VI) under visible light irradiation. J Environ Chem Eng 6:7327–7337. https://doi.org/10.1016/j.jece.2018.08.055
Rauf A, Sher Shah MSA, Choi GH et al (2015) Facile synthesis of hierarchically structured Bi2S3/Bi2WO6 photocatalysts for highly efficient reduction of Cr(VI). ACS Sustain Chem Eng 3:2847–2855. https://doi.org/10.1021/acssuschemeng.5b00783
Ray RR (2016) Adverse hematological effects of hexavalent chromium: an overview. Interdiscip Toxicol 9:55–65. https://doi.org/10.1515/intox-2016-0007
Rengaraj S, Venkataraj S, Yeon JW et al (2007) Preparation, characterization and application of Nd-TiO2 photocatalyst for the reduction of Cr(VI) under UV light illumination. Appl Catal B Environ 77:157–165. https://doi.org/10.1016/j.apcatb.2007.07.016
Richard FC, Bourg ACM (1991) Aqueous geochemistry of chromium: a review. Water Res 25:807–816. https://doi.org/10.1016/0043-1354(91)90160-R
Rumaiz AK, Woicik JC, Weiland C et al (2012) Band alignment in Ge/GeOx/HfO2/TiO2 heterojunctions as measured by hard x-ray photoelectron spectroscopy. Appl Phys Lett 101:222110. https://doi.org/10.1063/1.4768947
Sacco O, Vaiano V, Matarangolo M (2018) ZnO supported on zeolite pellets as efficient catalytic system for the removal of caffeine by adsorption and photocatalysis. Sep Purif Technol 193:303–310. https://doi.org/10.1016/j.seppur.2017.10.056
Sane P, Chaudhari S, Nemade P, Sontakke S (2018) Photocatalytic reduction of chromium (VI) using combustion synthesized TiO2. J Environ Chem Eng 6:68–73. https://doi.org/10.1016/j.jece.2017.11.060
Santos SGS, Paulista LO, Silva TFCV et al (2019) Intensifying heterogeneous TiO 2 photocatalysis for bromate reduction using the NETmix photoreactor. Sci Total Environ 664:805–816. https://doi.org/10.1016/j.scitotenv.2019.02.045
Sereshti H, Vasheghani Farahani M, Baghdadi M (2016) Trace determination of chromium(VI) in environmental water samples using innovative thermally reduced graphene (TRG) modified SiO2 adsorbent for solid phase extraction and UV-vis spectrophotometry. Talanta 146:662–669. https://doi.org/10.1016/j.talanta.2015.06.051
Serpone N (1997) Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. J Photochem Photobiol A Chem 104:1–12. https://doi.org/10.1016/S1010-6030(96)04538-8
Shah BR, Patel UD (2019) Aqueous pollutants in water bodies can be photocatalytically reduced by TiO2 nano-particles in the presence of natural organic matters. Sep Purif Technol 209:748–755. https://doi.org/10.1016/j.seppur.2018.09.017
Shah AP, Jain S, Mokale VJ, Shimpi NG (2019) High performance visible light photocatalysis of electrospun PAN/ZnO hybrid nanofibers. J Ind Eng Chem 77:154–163. https://doi.org/10.1016/j.jiec.2019.04.030
Shifu C, Sujuan Z, Wei L, Wei Z (2008) Preparation and activity evaluation of p-n junction photocatalyst NiO/TiO2. J Hazard Mater 155:320–326. https://doi.org/10.1016/j.jhazmat.2007.11.063
Singh S, Ahmed I, Haldar KK (2018) Nickel oxide decorated zinc oxide composite nanorods: excellent catalyst for photoreduction of hexavalent chromium. J Colloid Interface Sci 523:1–6. https://doi.org/10.1016/j.jcis.2018.03.012
Skliri E, Miao J, Xie J et al (2018) Assembly and photochemical properties of mesoporous networks of spinel ferrite nanoparticles for environmental photocatalytic remediation. Appl Catal B Environ 227:330–339. https://doi.org/10.1016/j.apcatb.2018.01.045
Smirnova N, Petrik I, Vorobets V et al (2017) Sol-gel synthesis, photo- and electrocatalytic properties of mesoporous TiO2 modified with transition metal ions. Nanoscale Res Lett 12:239. https://doi.org/10.1186/s11671-017-2002-3
Song L, Wang Y, Ma J et al (2018) Core/shell structured Zn/ZnO nanoparticles synthesized by gaseous laser ablation with enhanced photocatalysis efficiency. Appl Surf Sci 442:101–105. https://doi.org/10.1016/j.apsusc.2018.02.143
Song W, Ge P, Ke Q et al (2019) Insight into the mechanisms for hexavalent chromium reduction and sulfisoxazole degradation catalyzed by graphitic carbon nitride: the Yin and Yang in the photo-assisted processes. Chemosphere 221:166–174. https://doi.org/10.1016/j.chemosphere.2019.01.045
Sornalingam K, McDonagh A, Zhou JL et al (2018) Photocatalysis of estrone in water and wastewater: comparison between Au-TiO2 nanocomposite and TiO2, and degradation by-products. Sci Total Environ 610–611:521–530. https://doi.org/10.1016/j.scitotenv.2017.08.097
Stern EW (1971) Homogeneous catalysis: progress, problems, and prospects. In: Origin and Refining of Petroleum. AMERICAN CHEMICAL SOCIETY, pp 11–197
Su R, Tiruvalam R, He Q et al (2012) Promotion of phenol photodecomposition over TiO 2 using Au, Pd, and Au-Pd nanoparticles. ACS Nano 6:6284–6292. https://doi.org/10.1021/nn301718v
Sun Y-P, Li X-Q, Zhang W-X, Wang HP (2007) A method for the preparation of stable dispersion of zero-valent iron nanoparticles. Colloids Surfaces A Physicochem Eng Asp 308:60–66. https://doi.org/10.1016/j.colsurfa.2007.05.029
Sun Z, Zheng L, Zheng S, Frost RL (2013) Preparation and characterization of TiO2/acid leached serpentinite tailings composites and their photocatalytic reduction of Chromium(VI). J Colloid Interface Sci 404:102–109. https://doi.org/10.1016/j.jcis.2013.04.027
Taghavi SM, Momenpour M, Azarian M, et al (2013) Effects of nanoparticles on the environment and outdoor workplaces. Electron physician 5:706–712. https://doi.org/10.14661/2013.706-712
Testa JJ, Grela MA, Litter MI (2002) Experimental evidence in favor of an initial one-electron-transfer process in the heterogeneous photocatalytic reduction of chromium(VI) over TiO2. Langmuir 17:3515–3517. https://doi.org/10.1021/la010100y
Testa JJ, Grela MA, Litter MI (2004) Heterogeneous photocatalytic reduction of chromium(VI) over TiO 2 particles in the presence of oxalate: involvement of Cr(V) species. Environ Sci Technol 38:1589–1594. https://doi.org/10.1021/es0346532
Trawiński J, Skibiński R (2019) Rapid degradation of clozapine by heterogeneous photocatalysis. Comparison with direct photolysis, kinetics, identification of transformation products and scavenger study. Sci Total Environ 665:557–567. https://doi.org/10.1016/j.scitotenv.2019.02.124
Tu JR, Shi XF, Lu HW et al (2016) Facile fabrication of SnS2 quantum dots for photoreduction of aqueous Cr(VI). Mater Lett 185:303–306. https://doi.org/10.1016/j.matlet.2016.09.002
Umebayashi T, Yamaki T, Itoh H, Asai K (2002) <V, Cr,Mn,Fe,Co,Ni-TiO2.pdf>. 63:1909–1920
Valari M, Antoniadis A, Mantzavinos D, Poulios I (2015) Photocatalytic reduction of Cr(VI) over titania suspensions. Catal Today 252:190–194. https://doi.org/10.1016/j.cattod.2014.10.014
Védrine JC (2018) Fundamentals of heterogeneous catalysis. In: Védrine JCBT-MO in HC (ed) Metal Oxides in Heterogeneous Catalysis. Elsevier, pp 1–41
Velegraki G, Miao J, Drivas C et al (2018) Fabrication of 3D mesoporous networks of assembled CoO nanoparticles for efficient photocatalytic reduction of aqueous Cr(VI). Appl Catal B Environ 221:635–644. https://doi.org/10.1016/j.apcatb.2017.09.064
Velegraki G, Vamvasakis I, Papadas IT et al (2019) Boosting photochemical activity by Ni doping of mesoporous CoO nanoparticle assemblies. Inorg Chem Front 6:765–774. https://doi.org/10.1039/c8qi01324a
Vengosh A, Coyte R, Karr J et al (2016) Origin of hexavalent chromium in drinking water wells from the piedmont aquifers of North Carolina. Environ Sci Technol Lett 3:409–414. https://doi.org/10.1021/acs.estlett.6b00342
Vignesh K, Priyanka R, Rajarajan M, Suganthi A (2013) Photoreduction of Cr(VI) in water using Bi2O3- ZrO2 nanocomposite under visible light irradiation. Mater Sci Eng B Solid-State Mater Adv Technol 178:149–157. https://doi.org/10.1016/j.mseb.2012.10.035
Vural Gürsel I, Noël T, Wang Q, Hessel V (2015) Separation/recycling methods for homogeneous transition metal catalysts in continuous flow. Green Chem 17:2012–2026. https://doi.org/10.1039/C4GC02160F
Wan Z, Zhang G, Wu X, Yin S (2017) Novel visible-light-driven Z-scheme Bi12GeO20/g-C3N4 photocatalyst: oxygen-induced pathway of organic pollutants degradation and proton assisted electron transfer mechanism of Cr(VI) reduction. Appl Catal B Environ 207:17–26. https://doi.org/10.1016/j.apcatb.2017.02.014
Wang N, Zhu L, Deng K et al (2010) Visible light photocatalytic reduction of Cr(VI) on TiO2 in situ modified with small molecular weight organic acids. Appl Catal B Environ 95:400–407. https://doi.org/10.1016/j.apcatb.2010.01.019
Wang Q, Cissoko N, Zhou M, Xu X (2011) Effects and mechanism of humic acid on chromium(VI) removal by zero-valent iron (Fe0) nanoparticles. Phys Chem Earth 36:442–446. https://doi.org/10.1016/j.pce.2010.03.020
Wang X, Blechert S, Antonietti M (2012) Polymeric graphitic carbon nitride for heterogeneous photocatalysis. ACS Catal 2:1596–1606. https://doi.org/10.1021/cs300240x
Wang W, Huang X, Wu S et al (2013) Preparation of p-n junction Cu2O/BiVO4 heterogeneous nanostructures with enhanced visible-light photocatalytic activity. Appl Catal B Environ 134–135:293–301. https://doi.org/10.1016/j.apcatb.2013.01.013
Wang T, Zhang L, Li C et al (2015) Synthesis of core-shell magnetic Fe3O4@poly(m -phenylenediamine) particles for chromium reduction and adsorption. Environ Sci Technol 49:5654–5662. https://doi.org/10.1021/es5061275
Wang CC, Du XD, Li J et al (2016a) Photocatalytic Cr(VI) reduction in metal-organic frameworks: a mini-review. Appl Catal B Environ 193:198–216. https://doi.org/10.1016/j.apcatb.2016.04.030
Wang Q, Shi X, Liu E et al (2016b) Facile synthesis of AgI/BiOI-Bi 2 O 3 multi-heterojunctions with high visible light activity for Cr(VI) reduction. J Hazard Mater 317:8–16. https://doi.org/10.1016/j.jhazmat.2016.05.044
Wang Q, Shi X, Xu J et al (2016c) Highly enhanced photocatalytic reduction of Cr(VI) on AgI/TiO2 under visible light irradiation: Influence of calcination temperature. J Hazard Mater 307:213–220. https://doi.org/10.1016/j.jhazmat.2015.12.050
Wang D, Pillai SC, Ho SH et al (2018) Plasmonic-based nanomaterials for environmental remediation. Appl Catal B Environ 237:721–741. https://doi.org/10.1016/j.apcatb.2018.05.094
Wang D, Xu Y, jing L, et al (2020a) In situ construction efficient visible-light-driven three-dimensional Polypyrrole/Zn3In2S6 nanoflower to systematically explore the photoreduction of Cr(VI): Performance, factors and mechanism. J Hazard Mater 384:121480. https://doi.org/10.1016/j.jhazmat.2019.121480
Wang Y, Kang C, Xiao K, Wang X (2020b) Fabrication of Bi2S3/MOFs composites without noble metals for enhanced photoreduction of Cr (VI). Sep Purif Technol 241:116703. https://doi.org/10.1016/j.seppur.2020.116703
Wang Z, Ma W, Chen C, Zhao J (2008) Es801379J. 42:7260–7266
Wei H, Zhang Q, Zhang Y et al (2016) Enhancement of the Cr(VI) adsorption and photocatalytic reduction activity of g-C 3 N 4 by hydrothermal treatment in HNO 3 aqueous solution. Appl Catal A Gen 521:9–18. https://doi.org/10.1016/j.apcata.2015.11.005
Wen J, Jiang T, Xu Y et al (2019) Efficient extraction and separation of vanadium and chromium in high chromium vanadium slag by sodium salt roasting-(NH4)2SO4 leaching. J Ind Eng Chem 71:327–335. https://doi.org/10.1016/j.jiec.2018.11.043
Widegren JA, Finke RG (2003) A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing conditions. J Mol Catal A Chem 198:317–341. https://doi.org/10.1016/S1381-1169(02)00728-8
Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube-Ti02 composites. Adv Mater 21:2233–2239. https://doi.org/10.1002/adma.200802738
Wrobel K, Corrales Escobosa AR, Gonzalez Ibarra AA et al (2015) Mechanistic insight into chromium(VI) reduction by oxalic acid in the presence of manganese(II). J Hazard Mater 300:144–152. https://doi.org/10.1016/j.jhazmat.2015.06.066
Wu Q, Zhao J, Qin G et al (2013) Photocatalytic reduction of Cr(VI) with TiO2 film under visible light. Appl Catal B Environ 142–143:142–148. https://doi.org/10.1016/j.apcatb.2013.04.056
Wu J, Wang J, Du Y et al (2015) Chemically controlled growth of porous CeO2 nanotubes for Cr(VI) photoreduction. Appl Catal B Environ 174–175:435–444. https://doi.org/10.1016/j.apcatb.2015.03.040
Wu J, Liu B, Ren Z et al (2018) CuS/RGO hybrid photocatalyst for full solar spectrum photoreduction from UV/Vis to near-infrared light. J Colloid Interface Sci 517:80–85. https://doi.org/10.1016/j.jcis.2017.09.042
Wu JH, Shao FQ, Han SY et al (2019) Shape-controlled synthesis of well-dispersed platinum nanocubes supported on graphitic carbon nitride as advanced visible-light-driven catalyst for efficient photoreduction of hexavalent chromium. J Colloid Interface Sci 535:41–49. https://doi.org/10.1016/j.jcis.2018.09.080
Xia Q, Huang B, Yuan X et al (2018) Modified stannous sulfide nanoparticles with metal-organic framework: toward efficient and enhanced photocatalytic reduction of chromium (VI) under visible light. J Colloid Interface Sci 530:481–492. https://doi.org/10.1016/j.jcis.2018.05.015
Xia H, Ying S, Feng L et al (2019) Decreased 8-oxoguanine DNA glycosylase 1 (hOGG1) expression and DNA oxidation damage induced by Cr (VI). Chem Biol Interact 299:44–51. https://doi.org/10.1016/j.cbi.2018.11.019
Xiong T, Huang H, Sun Y, Dong F (2015) In situ synthesis of a C-doped (BiO)2CO3 hierarchical self-assembly effectively promoting visible light photocatalysis. J Mater Chem A 3:6118–6127. https://doi.org/10.1039/c5ta00103j
Xu SC, Zhang YX, Pan SS et al (2011) Recyclable magnetic photocatalysts of Fe 2+/TiO 2 hierarchical architecture with effective removal of Cr(VI) under UV light from water. J Hazard Mater 196:29–35. https://doi.org/10.1016/j.jhazmat.2011.08.068
Xu SC, Pan SS, Xu Y et al (2015) Efficient removal of Cr(VI) from wastewater under sunlight by Fe(II)-doped TiO2 spherical shell. J Hazard Mater 283:7–13. https://doi.org/10.1016/j.jhazmat.2014.08.071
Xu QQ, Qiu SW, Xing XY et al (2016) Tuning the morphology of ZnO nanoparticles by Zn-clusters and application on the photoreduction of Cr(VI). Solid State Sci 58:22–29. https://doi.org/10.1016/j.solidstatesciences.2016.05.010
Xu Q, Li R, Wang C, Yuan D (2017) Visible-light photocatalytic reduction of Crx(VI) using nano-sized delafossite (CuFeO 2) synthesized by hydrothermal method. J Alloys Compd 723:441–447. https://doi.org/10.1016/j.jallcom.2017.06.243
Xu F, Chen H, Xu C et al (2018a) Ultra-thin Bi2WO6 porous nanosheets with high lattice coherence for enhanced performance for photocatalytic reduction of Cr(VI). J Colloid Interface Sci 525:97–106. https://doi.org/10.1016/j.jcis.2018.04.057
Xu P, Huang S, Lv Y et al (2018b) Surfactant-assisted hydrothermal synthesis of rGO/SnIn4S8 nanosheets and their application in complete removal of Cr(VI). RSC Adv 8:5749–5759. https://doi.org/10.1039/c7ra12863k
Xu L, Bai X, Guo L et al (2019a) Facial fabrication of carbon quantum dots (CDs)-modified N-TiO2-x nanocomposite for the efficient photoreduction of Cr(VI) under visible light. Chem Eng J 357:473–486. https://doi.org/10.1016/j.cej.2018.09.172
Xu Y, Wang D, Xie M et al (2019b) Novel broad spectrum light responsive PPy/hexagonal-SnS 2 photocatalyst for efficient photoreduction of Cr(VI). Mater Res Bull 112:226–235. https://doi.org/10.1016/j.materresbull.2018.12.017
Yamashita H, Ichihashi Y, Takeuchi M et al (1999) Characterization of metal ion-implanted titanium oxide photocatalysts operating under visible light irradiation. J Synchrotron Radiat 6:451–452. https://doi.org/10.1107/S0909049598017257
Yan H, Yang J, Ma G et al (2009) Visible-light-driven hydrogen production with extremely high quantum efficiency on Pt-PdS/CdS photocatalyst. J Catal 266:165–168. https://doi.org/10.1016/j.jcat.2009.06.024
Yang JK, Lee SM (2006) Removal of Cr(VI) and humic acid by using TiO2 photocatalysis. Chemosphere 63:1677–1684. https://doi.org/10.1016/j.chemosphere.2005.10.005
Yang L, Xiao Y, Liu S et al (2010) Photocatalytic reduction of Cr(VI) on WO3 doped long TiO2 nanotube arrays in the presence of citric acid. Appl Catal B Environ 94:142–149. https://doi.org/10.1016/j.apcatb.2009.11.002
Yang Y, Yang XA, Leng D et al (2018) Fabrication of g-C 3 N 4 /SnS 2 /SnO 2 nanocomposites for promoting photocatalytic reduction of aqueous Cr(VI) under visible light. Chem Eng J 335:491–500. https://doi.org/10.1016/j.cej.2017.10.173
Yang D, Zhao X, Zou X et al (2019a) Removing Cr (VI) in water via visible-light photocatalytic reduction over Cr-doped SrTiO3 nanoplates. Chemosphere 215:586–595. https://doi.org/10.1016/j.chemosphere.2018.10.068
Yang G, Liang Y, Li K et al (2019b) Construction of a Ce3+ doped CeO2/Bi2MoO6 heterojunction with a mutual component activation system for highly enhancing the VIsible-light photocatalytic actiVIty for removal of TC or Cr(VI). Inorg Chem Front 6:1507–1517. https://doi.org/10.1039/c9qi00302a
Ye J, Liu J, Li C et al (2017) Heterogeneous photocatalysis of tris(2-chloroethyl) phosphate by UV/TiO2: degradation products and impacts on bacterial proteome. Water Res 124:29–38. https://doi.org/10.1016/j.watres.2017.07.034
Ye M, Wei W, Zheng L et al (2019) Enhanced visible light photoreduction of aqueous Cr(VI) by Ag/Bi4O7/g-C3N4 nanosheets ternary metal/non-metal Z-scheme heterojunction. J Hazard Mater 365:674–683. https://doi.org/10.1016/j.jhazmat.2018.11.069
Yu J, Liu S, Xiu Z et al (2008) Combustion synthesis and photocatalytic activities of Bi3+-doped TiO2 nanocrystals. J Alloys Compd 461:2007–2009
Yu J, Zhuang S, Xu X et al (2015) Photogenerated electron reservoir in hetero-p-n CuO-ZnO nanocomposite device for visible-light-driven photocatalytic reduction of aqueous Cr(vi). J Mater Chem A 3:1199–1207. https://doi.org/10.1039/c4ta04526b
Yu T, Lv L, Wang H, Tan X (2018) Enhanced photocatalytic treatment of Cr(VI) and phenol by monoclinic BiVO4 with {010}-orientation growth. Mater Res Bull 107:248–254. https://doi.org/10.1016/j.materresbull.2018.07.033
Yuan YJ, Chen DQ, Shi XF et al (2017) Facile fabrication of “green” SnS2 quantum dots/reduced graphene oxide composites with enhanced photocatalytic performance. Chem Eng J 313:1438–1446. https://doi.org/10.1016/j.cej.2016.11.049
Yuan X, Wang H, Wang J et al (2018) Near-infrared-driven Cr(vi) reduction in aqueous solution based on a MoS 2 /Sb 2 S 3 photocatalyst. Catal Sci Technol 8:1545–1554. https://doi.org/10.1039/c7cy02531a
Zebbar N, Trari M, Doulache M et al (2014) Physical and photo-electrochemical characterizations of ZnO thin films deposited by ultrasonic spray method: application to HCrO 4- photoreduction. Appl Surf Sci 292:837–842. https://doi.org/10.1016/j.apsusc.2013.12.059
Zeleke MA, Kuo DH (2019) Synthesis of oxy-sulfide based nanocomposite catalyst for visible light-driven reduction of Cr(VI). Environ Res 172:279–288. https://doi.org/10.1016/j.envres.2019.02.032
Zhang Y, Park SJ (2019a) Stabilization of dispersed CuPd bimetallic alloy nanoparticles on ZIF-8 for photoreduction of Cr(VI) in aqueous solution. Chem Eng J 369:353–362. https://doi.org/10.1016/j.cej.2019.03.083
Zhang Y, Park SJ (2019b) Facile construction of MoO3@ZIF-8 core-shell nanorods for efficient photoreduction of aqueous Cr (VI). Appl Catal B Environ 240:92–101. https://doi.org/10.1016/j.apcatb.2018.08.077
Zhang D, Xu G, Chen F (2015) Hollow spheric Ag-Ag 2 S/TiO 2 composite and its application for photocatalytic reduction of Cr(VI). Appl Surf Sci 351:962–968. https://doi.org/10.1016/j.apsusc.2015.06.044
Zhang Y, Wang Q, Lu J et al (2016) Synergistic photoelectrochemical reduction of Cr(VI) and oxidation of organic pollutants by g-C 3 N 4 /TiO 2 -NTs electrodes. Chemosphere 162:55–63. https://doi.org/10.1016/j.chemosphere.2016.07.064
Zhang F, Zhang Y, Zhou C et al (2017) A new high efficiency visible-light photocatalyst made of SnS2 and conjugated derivative of polyvinyl alcohol and its application to Cr(VI) reduction. Chem Eng J 324:140–153. https://doi.org/10.1016/j.cej.2017.05.009
Zhang J, Gao N, Chen F et al (2019a) Improvement of Cr (VI) photoreduction under visible-light by g-C 3 N 4 modified by nano-network structured palygorskite. Chem Eng J 358:398–407. https://doi.org/10.1016/j.cej.2018.10.083
Zhang W, Zhang D, Liang Y (2019b) Nanotechnology in remediation of water contaminated by poly- and perfluoroalkyl substances: a review. Environ Pollut 247:266–276. https://doi.org/10.1016/j.envpol.2019.01.045
Zhang X, Li Z, Nie X et al (2019c) The role of dissolved organic matter in soil organic carbon stability under water erosion. Ecol Indic 102:724–733. https://doi.org/10.1016/j.ecolind.2019.03.038
Zhang Y, Yang J, Du J, Xing B (2019d) Goethite catalyzed Cr(VI) reduction by tartaric acid via surface adsorption. Ecotoxicol Environ Saf 171:594–599. https://doi.org/10.1016/j.ecoenv.2019.01.024
Zhang Y, Yang X, Zhang P et al (2019e) Morphology-tunable & template-free fabrication of MoS2 nanostructures with enhanced photoreduction activities for Cr(VI). J Photochem Photobiol A Chem 373:176–181. https://doi.org/10.1016/j.jphotochem.2019.01.016
Zhang X, Song L, Zeng X, Li M (2012) Effects of electron donors on the TiO2 photocatalytic reduction of heavy metal ions under visible light. Adv Intell Soft Comput 138 AISC:327–333. https://doi.org/10.1007/978-3-642-27869-3_43
Zhao Y, Zhao D, Chen C, Wang X (2013) Enhanced photo-reduction and removal of Cr(VI) on reduced graphene oxide decorated with TiO2 nanoparticles. J Colloid Interface Sci 405:211–217. https://doi.org/10.1016/j.jcis.2013.05.004
Zhao X, Huang S, Liu Y et al (2018) In situ preparation of highly stable polyaniline/W18O49 hybrid nanocomposite as efficient visible light photocatalyst for aqueous Cr(VI) reduction. J Hazard Mater 353:466–475. https://doi.org/10.1016/j.jhazmat.2018.04.005
Zhao C, Wang Z, Li X et al (2020) Facile fabrication of BUC-21/Bi24O31Br 10 composites for enhanced photocatalytic Cr(VI) reduction under white light. Chem Eng J 389:123431. https://doi.org/10.1016/j.cej.2019.123431
Zheng X, Xu S, Wang Y et al (2018) Enhanced degradation of ciprofloxacin by graphitized mesoporous carbon (GMC)-TiO2 nanocomposite: Strong synergy of adsorption-photocatalysis and antibiotics degradation mechanism. J Colloid Interface Sci 527:202–213. https://doi.org/10.1016/j.jcis.2018.05.054