Surfactant free solvothermal synthesis of Cu3BiS3 nanoparticles and the study of band alignments with n-type window layers for applications in solar cells: Experimental and theoretical approach
Tài liệu tham khảo
Giraldo, 2019, Progress and perspectives of thin film kesterite photovoltaic technology: a critical review, Adv. Mater., 31, 10.1002/adma.201806692
Villars, 1994
M. George, Mineral commodity summaries, Tech. Rep., U.S. Government Printing Office, Washington, DC (U.S. Geological Survey Report) (2012).
Whittles, 2019, Band alignments, band gap, core levels, and valence band states in Cu3 BiS3 for photovoltaics, ACS Appl. Mater. Interfaces, 11, 27033, 10.1021/acsami.9b04268
Deshmukh, 2017, A comprehensive review on synthesis and characterizations of Cu3 BiS3 thin films for solar photovoltaics, Nanotechnol. Environ. Eng., 2, 2365
Gerein, 2006, One-step synthesis and optical and electrical properties of thin film Cu3 BiS3 for use as a solar absorber in photovoltaic devices, Chem. Mater., 18, 6297, 10.1021/cm061453r
Yakushev, 2014, Electronic and structural characterisation of Cu3 BiS3 thin films for the absorber layer of sustainable photovoltaics, Thin Solid Films, 562, 195, 10.1016/j.tsf.2014.04.057
Zeng, 2012, Facile synthesis of flower-like Cu3 BiS3 hierarchical nanostructures and their electrochemical properties for lithium-ion batteries, CrystEngComm, 14, 550, 10.1039/C1CE06056B
Wei, 2018, Wittichenite Cu3 BiS3: synthesis and physical properties, J. Electron. Mater., 47, 2374, 10.1007/s11664-017-6053-0
Murali, 2015, Nanocomposite based organicInorganic Cu3 BiS3 high sensitive hybrid photonic devices, J. Nanosci. Nanotechnol., 15, 2742, 10.1166/jnn.2015.8725
Yin, 2014, Synthesis of Cu3 BiS3 nanosheet films on TiO2 nanorod arrays by a solvothermal route and their photoelectrochemical characteristics, CrystEngComm, 16, 2795, 10.1039/c3ce41958d
Li, 2018, One-step synthesis of Cu3 BiS3 thin films by a dimethyl sulfoxide (DMSO)-based solution coating process for solar cell application, Sol. Energy Mater. Sol. Cells, 174, 593, 10.1016/j.solmat.2017.09.050
Hu, 2003, Convenient hydrothermal decomposition process for preparation of nanocrystalline mineral Cu3 BiS3 and Pb1−x Bi2x∕3 S, Mater. Chem. Phys., 78, 650, 10.1016/S0254-0584(02)00219-5
Viezbicke, 2013, Solvothermal synthesis of Cu3 BiS3 enabled by precursor complexing, ACS Sustain. Chem. Eng., 1, 306, 10.1021/sc3000477
Yan, 2013, Colloidal synthesis and characterizations of wittichenite copper bismuth sulphide nanocrystals, Nanoscale, 5, 1789, 10.1039/c3nr33268c
Deng, 2014, A generalized strategy for controlled synthesis of ternary metal sulfide nanocrystals, New J. Chem., 38, 77, 10.1039/C3NJ00928A
Kehoe, 2013, Cu3 MCh3 (M = Sb, Bi; Ch = S, Se) as candidate solar cell absorbers: insights from theory, Phys. Chem. Chem. Phys., 15, 15477, 10.1039/c3cp52482e
Kumar, 2013, Cu3 BiS3 as a potential photovoltaic absorber with high optical efficiency, Appl. Phys. Lett., 102, 10.1063/1.4792751
Kumar, 2013, Ternary Cu3 BiY3 (Y = S, Se, and Te) for thin-film solar cells, MRS Proc., 1538, 235, 10.1557/opl.2013.1014
Tablero, 2013, Photovoltaic application of O-doped Wittichenite-Cu3 BiS3: from microscopic properties to maximum efficiencies, Prog. Photovolt. Res. Appl., 21, 894, 10.1002/pip.2173
Yu, 2013, Inverse design of high absorption thin-film photovoltaic materials, Adv. Energy Mater., 3, 43, 10.1002/aenm.201200538
Pal, 2017, Phase controlled synthesis of CuSbS2 nanostructures: effect of reaction conditions on phase purity and morphology, Mater. Des., 136, 165, 10.1016/j.matdes.2017.09.059
Giannozzi, 2017, Advanced capabilities for materials modelling with quantum espresso, J. Phys. Condens. Matter, 29, 10.1088/1361-648X/aa8f79
Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865
Perdew, 1997, Generalized gradient approximation made simple, Phys. Rev. Lett., 78, 1396, 10.1103/PhysRevLett.78.1396
Troullier, 1991, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B, 43, 1993, 10.1103/PhysRevB.43.1993
Gonze, 1990, Ghost states for separable, norm-conserving, abinitio pseudopotentials, Phys. Rev. B, 41, 12264, 10.1103/PhysRevB.41.12264
Methfessel, 1989, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B, 40, 3616, 10.1103/PhysRevB.40.3616
Kajita, 2006, Density functional calculation of work function using charged slab systems, J. Phys. Conf. Ser., 29, 120, 10.1088/1742-6596/29/1/023
Zhang, 2013, ZnO-GaN heterostructured nanosheets for solar energy harvesting: computational studies based on hybrid density functional theory, J. Mater. Chem. A, 1, 2231, 10.1039/C2TA00706A
Kanan, 2012, Band gap engineering of MnO via ZnO alloying: a potential new visible-light photocatalyst, J. Phys. Chem. C, 116, 9876, 10.1021/jp300590d
Opoku, 2018, Insights into the photocatalytic mechanism of mediator-free direct Z-scheme g-C3 N4 /Bi2 MoO6 (010) and g-C3 N4 /Bi2 WO6 (010) heterostructures: a hybrid density functional theory study, Appl. Surf. Sci., 427, 487, 10.1016/j.apsusc.2017.09.019
Gajdoš, 2006, Linear optical properties in the projector-augmented wave methodology, Phys. Rev. B, 73, 10.1103/PhysRevB.73.045112
Melrose, 1977, Generalised Kramers-Kronig formula for spatially dispersive media, J. Phys. A Math. Gen., 10, L17, 10.1088/0305-4470/10/1/004
Soler, 2002, The SIESTA method for abinitio order-N materials, J. Phys. Condens. Matter, 14, 2745, 10.1088/0953-8984/14/11/302
Tablero, 2016, The optical properties of CuPbSbS3 -bournonite with photovoltaic applications, Theor. Chem. Acc., 135, 126, 10.1007/s00214-016-1890-0
Grisolía, 2011, Density functional theory investigations of the structural and electronic properties of ag2 v4 o11, Phys. Rev. B, 83, 10.1103/PhysRevB.83.165111
O’Regan, 2011, Subspace representations in ab initio methods for strongly correlated systems, Phys. Rev. B, 83, 10.1103/PhysRevB.83.245124
Tablero, 2009, Effects of the orbital self-interaction in both strongly and weakly correlated systems, J. Chem. Phys., 130, 10.1063/1.3072341
Tablero, 2008, Representations of the occupation number matrix on the lda/gga+u method, J. Phys. Condens. Matter, 20, 10.1088/0953-8984/20/32/325205
Anisimov, 1991, Band theory and mott insulators: Hubbard u instead of stoner i, Phys. Rev. B, 44, 943, 10.1103/PhysRevB.44.943
Makovicky, 1983, The phase transformations and thermal expansion of the solid electrolyte Cu3 BiS3 between 25 and 300oC, J. Solid State Chem., 49, 85, 10.1016/0022-4596(83)90219-0
R.T. Downs, The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals, Tech. Rep., Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan (2006).
Hussain, 2020, p-type Cu3 BiS3 thin films for solar cell absorber layer via one stage thermal evaporation, Appl. Surf. Sci., 505, 10.1016/j.apsusc.2019.144597
Yakushev, 2014, Electronic and structural characterisation of cu3bis3 thin films for the absorber layer of sustainable photovoltaics, Thin Solid Films, 562, 195, 10.1016/j.tsf.2014.04.057
Schmidt, 2014, Using the Seebeck coefficient to determine charge carrier concentration, mobility, and relaxation time in InAs nanowires, Appl. Phys. Lett., 104, 10.1063/1.4858936
Medina-Montes, 2018, Development of phase-pure cusbs2 thin films by annealing thermally evaporated cus/sb2s3 stacking layer for solar cell applications, Mater. Sci. Semicond. Process., 80, 74, 10.1016/j.mssp.2018.02.029
Cerdán-Pasarán, 2019, Effect of cobalt doping on the device properties of sb2s3-sensitized tio2 solar cells, Sol. Energy, 183, 697, 10.1016/j.solener.2019.03.077
Whittles, 2016, Band alignments, valence bands, and core levels in the tin sulfides SnS, SnS2, and Sn2 S3: experiment and theory, Chem. Mater., 28, 3718, 10.1021/acs.chemmater.6b00397
Minemoto, 2001, Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation, Sol. Energy Mater. Sol. Cells, 67, 83, 10.1016/S0927-0248(00)00266-X
Cheng, 2009, A DFT investigation on ZnO clusters and nanostructures, J. Mol. Struct. THEOCHEM, 894, 121, 10.1016/j.theochem.2008.10.023
Matxain, 2000, Small clusters of II-VI materials: ZniSi, i = 1 − 9, Phys. Rev. A, 61, 10.1103/PhysRevA.61.053201