Surfactant free solvothermal synthesis of Cu3BiS3 nanoparticles and the study of band alignments with n-type window layers for applications in solar cells: Experimental and theoretical approach

Journal of Alloys and Compounds - Tập 866 - Trang 158447 - 2021
M.V. Morales-Gallardo1, Jojhar E. Pascoe-Sussoni1, Cornelio Delesma1, X. Mathew1, F. Paraguay-Delgado2, Jesús Muñiz1, N.R. Mathews1
1Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Priv. Xochicalco s/n, Col. Centro, Temixco, Morelos CP 62580, Mexico
2Centro de Investigación en Materiales Avanzados, Miguel de Cervantes 120, Chihuahua CP 31136, México

Tài liệu tham khảo

Giraldo, 2019, Progress and perspectives of thin film kesterite photovoltaic technology: a critical review, Adv. Mater., 31, 10.1002/adma.201806692 Villars, 1994 M. George, Mineral commodity summaries, Tech. Rep., U.S. Government Printing Office, Washington, DC (U.S. Geological Survey Report) (2012). Whittles, 2019, Band alignments, band gap, core levels, and valence band states in Cu3 BiS3 for photovoltaics, ACS Appl. Mater. Interfaces, 11, 27033, 10.1021/acsami.9b04268 Deshmukh, 2017, A comprehensive review on synthesis and characterizations of Cu3 BiS3 thin films for solar photovoltaics, Nanotechnol. Environ. Eng., 2, 2365 Gerein, 2006, One-step synthesis and optical and electrical properties of thin film Cu3 BiS3 for use as a solar absorber in photovoltaic devices, Chem. Mater., 18, 6297, 10.1021/cm061453r Yakushev, 2014, Electronic and structural characterisation of Cu3 BiS3 thin films for the absorber layer of sustainable photovoltaics, Thin Solid Films, 562, 195, 10.1016/j.tsf.2014.04.057 Zeng, 2012, Facile synthesis of flower-like Cu3 BiS3 hierarchical nanostructures and their electrochemical properties for lithium-ion batteries, CrystEngComm, 14, 550, 10.1039/C1CE06056B Wei, 2018, Wittichenite Cu3 BiS3: synthesis and physical properties, J. Electron. Mater., 47, 2374, 10.1007/s11664-017-6053-0 Murali, 2015, Nanocomposite based organicInorganic Cu3 BiS3 high sensitive hybrid photonic devices, J. Nanosci. Nanotechnol., 15, 2742, 10.1166/jnn.2015.8725 Yin, 2014, Synthesis of Cu3 BiS3 nanosheet films on TiO2 nanorod arrays by a solvothermal route and their photoelectrochemical characteristics, CrystEngComm, 16, 2795, 10.1039/c3ce41958d Li, 2018, One-step synthesis of Cu3 BiS3 thin films by a dimethyl sulfoxide (DMSO)-based solution coating process for solar cell application, Sol. Energy Mater. Sol. Cells, 174, 593, 10.1016/j.solmat.2017.09.050 Hu, 2003, Convenient hydrothermal decomposition process for preparation of nanocrystalline mineral Cu3 BiS3 and Pb1−x Bi2x∕3 S, Mater. Chem. Phys., 78, 650, 10.1016/S0254-0584(02)00219-5 Viezbicke, 2013, Solvothermal synthesis of Cu3 BiS3 enabled by precursor complexing, ACS Sustain. Chem. Eng., 1, 306, 10.1021/sc3000477 Yan, 2013, Colloidal synthesis and characterizations of wittichenite copper bismuth sulphide nanocrystals, Nanoscale, 5, 1789, 10.1039/c3nr33268c Deng, 2014, A generalized strategy for controlled synthesis of ternary metal sulfide nanocrystals, New J. Chem., 38, 77, 10.1039/C3NJ00928A Kehoe, 2013, Cu3 MCh3 (M = Sb, Bi; Ch = S, Se) as candidate solar cell absorbers: insights from theory, Phys. Chem. Chem. Phys., 15, 15477, 10.1039/c3cp52482e Kumar, 2013, Cu3 BiS3 as a potential photovoltaic absorber with high optical efficiency, Appl. Phys. Lett., 102, 10.1063/1.4792751 Kumar, 2013, Ternary Cu3 BiY3 (Y = S, Se, and Te) for thin-film solar cells, MRS Proc., 1538, 235, 10.1557/opl.2013.1014 Tablero, 2013, Photovoltaic application of O-doped Wittichenite-Cu3 BiS3: from microscopic properties to maximum efficiencies, Prog. Photovolt. Res. Appl., 21, 894, 10.1002/pip.2173 Yu, 2013, Inverse design of high absorption thin-film photovoltaic materials, Adv. Energy Mater., 3, 43, 10.1002/aenm.201200538 Pal, 2017, Phase controlled synthesis of CuSbS2 nanostructures: effect of reaction conditions on phase purity and morphology, Mater. Des., 136, 165, 10.1016/j.matdes.2017.09.059 Giannozzi, 2017, Advanced capabilities for materials modelling with quantum espresso, J. Phys. Condens. Matter, 29, 10.1088/1361-648X/aa8f79 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Perdew, 1997, Generalized gradient approximation made simple, Phys. Rev. Lett., 78, 1396, 10.1103/PhysRevLett.78.1396 Troullier, 1991, Efficient pseudopotentials for plane-wave calculations, Phys. Rev. B, 43, 1993, 10.1103/PhysRevB.43.1993 Gonze, 1990, Ghost states for separable, norm-conserving, abinitio pseudopotentials, Phys. Rev. B, 41, 12264, 10.1103/PhysRevB.41.12264 Methfessel, 1989, High-precision sampling for Brillouin-zone integration in metals, Phys. Rev. B, 40, 3616, 10.1103/PhysRevB.40.3616 Kajita, 2006, Density functional calculation of work function using charged slab systems, J. Phys. Conf. Ser., 29, 120, 10.1088/1742-6596/29/1/023 Zhang, 2013, ZnO-GaN heterostructured nanosheets for solar energy harvesting: computational studies based on hybrid density functional theory, J. Mater. Chem. A, 1, 2231, 10.1039/C2TA00706A Kanan, 2012, Band gap engineering of MnO via ZnO alloying: a potential new visible-light photocatalyst, J. Phys. Chem. C, 116, 9876, 10.1021/jp300590d Opoku, 2018, Insights into the photocatalytic mechanism of mediator-free direct Z-scheme g-C3 N4 /Bi2 MoO6 (010) and g-C3 N4 /Bi2 WO6 (010) heterostructures: a hybrid density functional theory study, Appl. Surf. Sci., 427, 487, 10.1016/j.apsusc.2017.09.019 Gajdoš, 2006, Linear optical properties in the projector-augmented wave methodology, Phys. Rev. B, 73, 10.1103/PhysRevB.73.045112 Melrose, 1977, Generalised Kramers-Kronig formula for spatially dispersive media, J. Phys. A Math. Gen., 10, L17, 10.1088/0305-4470/10/1/004 Soler, 2002, The SIESTA method for abinitio order-N materials, J. Phys. Condens. Matter, 14, 2745, 10.1088/0953-8984/14/11/302 Tablero, 2016, The optical properties of CuPbSbS3 -bournonite with photovoltaic applications, Theor. Chem. Acc., 135, 126, 10.1007/s00214-016-1890-0 Grisolía, 2011, Density functional theory investigations of the structural and electronic properties of ag2 v4 o11, Phys. Rev. B, 83, 10.1103/PhysRevB.83.165111 O’Regan, 2011, Subspace representations in ab initio methods for strongly correlated systems, Phys. Rev. B, 83, 10.1103/PhysRevB.83.245124 Tablero, 2009, Effects of the orbital self-interaction in both strongly and weakly correlated systems, J. Chem. Phys., 130, 10.1063/1.3072341 Tablero, 2008, Representations of the occupation number matrix on the lda/gga+u method, J. Phys. Condens. Matter, 20, 10.1088/0953-8984/20/32/325205 Anisimov, 1991, Band theory and mott insulators: Hubbard u instead of stoner i, Phys. Rev. B, 44, 943, 10.1103/PhysRevB.44.943 Makovicky, 1983, The phase transformations and thermal expansion of the solid electrolyte Cu3 BiS3 between 25 and 300oC, J. Solid State Chem., 49, 85, 10.1016/0022-4596(83)90219-0 R.T. Downs, The RRUFF Project: an integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals, Tech. Rep., Program and Abstracts of the 19th General Meeting of the International Mineralogical Association in Kobe, Japan (2006). Hussain, 2020, p-type Cu3 BiS3 thin films for solar cell absorber layer via one stage thermal evaporation, Appl. Surf. Sci., 505, 10.1016/j.apsusc.2019.144597 Yakushev, 2014, Electronic and structural characterisation of cu3bis3 thin films for the absorber layer of sustainable photovoltaics, Thin Solid Films, 562, 195, 10.1016/j.tsf.2014.04.057 Schmidt, 2014, Using the Seebeck coefficient to determine charge carrier concentration, mobility, and relaxation time in InAs nanowires, Appl. Phys. Lett., 104, 10.1063/1.4858936 Medina-Montes, 2018, Development of phase-pure cusbs2 thin films by annealing thermally evaporated cus/sb2s3 stacking layer for solar cell applications, Mater. Sci. Semicond. Process., 80, 74, 10.1016/j.mssp.2018.02.029 Cerdán-Pasarán, 2019, Effect of cobalt doping on the device properties of sb2s3-sensitized tio2 solar cells, Sol. Energy, 183, 697, 10.1016/j.solener.2019.03.077 Whittles, 2016, Band alignments, valence bands, and core levels in the tin sulfides SnS, SnS2, and Sn2 S3: experiment and theory, Chem. Mater., 28, 3718, 10.1021/acs.chemmater.6b00397 Minemoto, 2001, Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation, Sol. Energy Mater. Sol. Cells, 67, 83, 10.1016/S0927-0248(00)00266-X Cheng, 2009, A DFT investigation on ZnO clusters and nanostructures, J. Mol. Struct. THEOCHEM, 894, 121, 10.1016/j.theochem.2008.10.023 Matxain, 2000, Small clusters of II-VI materials: ZniSi, i = 1 − 9, Phys. Rev. A, 61, 10.1103/PhysRevA.61.053201