Licensed to kill: the lifestyle of a necrotrophic plant pathogen
Tài liệu tham khảo
Mendgen, 2002, Plant infection and the establishment of fungal biotrophy, Trends Plant Sci., 7, 352, 10.1016/S1360-1385(02)02297-5
de Meaux, 2003, Evolution of plant resistance at the molecular level: ecological context of species interactions, Heredity, 91, 345, 10.1038/sj.hdy.6800342
Wolpert, 2002, Host-selective toxins and avirulence determinants: what's in a name?, Annu. Rev. Phytopathol., 40, 251, 10.1146/annurev.phyto.40.011402.114210
De Bary, 1886, Ueber einige Sclerotinien und Sclerotienkrankheiten, Botanische Zeitschrift, 44, 377
Brown, 1965, Toxins and cell-wall dissolving enzymes in relation to plant disease, Annu. Rev. Phytopathol., 3, 1, 10.1146/annurev.py.03.090165.000245
Hegedus, 2005, Sclerotinia sclerotiorum: when “to be or not to be” a pathogen, FEMS Microbiol. Lett., 251, 177, 10.1016/j.femsle.2005.07.040
Bolton, 2006, Sclerotinia sclerotiorum (Lib.) de Bary: biology and molecular traits of a cosmopolitan pathogen, Mol. Plant Pathol., 7, 1, 10.1111/j.1364-3703.2005.00316.x
Rolland, 2003, Agrobacterium-mediated transformation of Botrytis cinerea, simple purification of monokaryotic transformants and rapid conidia-based identification of the transfer-DNA host genomic DNA flanking sequences, Curr. Genet., 44, 164, 10.1007/s00294-003-0438-8
Tudzynski, 2004, Approaches to molecular genetics and genomics of Botrytis, 53
Viaud, 2005, Expressed sequence tags from the phytopathogenic fungus Botrytis cinerea, Eur. J. Plant Pathol., 111, 139, 10.1007/s10658-004-1429-4
Tenberge, 2004, Morphology and cellular organization in Botrytis interactions with plants, 67
Gourgues, 2004, The tetraspanin BcPls1 is required for appressorium-mediated penetration of Botrytis cinerea into host plant leaves, Mol. Microbiol., 51, 619, 10.1046/j.1365-2958.2003.03866.x
De Jong, 1997, Glycerol generates turgor in rice blast, Nature, 389, 244, 10.1038/38418
Doss, 2003, Melanin in the extracellular matrix of germlings of Botrytis cinerea, Phytochemistry, 63, 687, 10.1016/S0031-9422(03)00323-6
Clergeot, 2001, PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea, Proc. Natl. Acad. Sci. U. S. A., 98, 6963, 10.1073/pnas.111132998
van Kan, 1997, Cutinase A of Botrytis cinerea is expressed, but not essential, during penetration of gerbera and tomato, Mol. Plant Microbe Interact., 10, 30, 10.1094/MPMI.1997.10.1.30
Reis, 2005, Molecular and functional characterization of a secreted lipase from Botrytis cinerea, Mol. Plant Pathol., 6, 257, 10.1111/j.1364-3703.2005.00280.x
Dean, 2005, The genome sequence of the rice blast fungus Magnaporthe grisea, Nature, 434, 980, 10.1038/nature03449
Tenberge, 2002, In situ localization of AOS in host–pathogen interactions, Microsc. Microanal., 8, 250, 10.1017/S1431927602100067
Mansfield, 1981, The ultrastructure of interactions between Botrytis species and broad bean leaves, Physiol. Plant Pathol., 19, 41, 10.1016/S0048-4059(81)80006-9
Kars, 2005, Necrotising activity of five Botrytis cinerea endopolygalacturonases produced in Pichia pastoris, Plant J., 43, 213, 10.1111/j.1365-313X.2005.02436.x
Colmenares, 2002, The putative role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea, J. Chem. Ecol., 28, 997, 10.1023/A:1015209817830
Deighton, 2001, Botrydial is produced in plant tissues infected by Botrytis cinerea, Phytochemistry, 57, 689, 10.1016/S0031-9422(01)00088-7
Siewers, 2005, Functional analysis of the cytochrome P450 monooxygenase gene Bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor, Mol. Plant Microbe Interact., 18, 602, 10.1094/MPMI-18-0602
Reino, 2004, Virulence-toxin production relationship in isolates of the plant pathogenic fungus Botrytis cinerea, J. Phytopathol., 152, 563, 10.1111/j.1439-0434.2004.00896.x
Lyon, 2004, 119
Rivas, 2005, Molecular interactions between tomato and the leaf mold pathogen Cladosporium fulvum, Annu. Rev. Phytopathol., 43, 395, 10.1146/annurev.phyto.43.040204.140224
Govrin, 2000, The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea, Curr. Biol., 10, 751, 10.1016/S0960-9822(00)00560-1
Schouten, 2002, Functional analysis of an extracellular catalase of Botrytis cinerea, Mol. Plant Pathol., 3, 227, 10.1046/j.1364-3703.2002.00114.x
Muckenschnabel, 2001, Botrytis cinerea induces the formation of free radicals in fruits of Capsicum annuum at positions remote from the site of infection, Protoplasma, 218, 112, 10.1007/BF01288367
Muckenschnabel, 2003, Oxidative effects in uninfected tissue in leaves of French bean (Phaseolus vulgaris) containing soft rots caused by Botrytis cinerea, J. Sci. Food Agric., 83, 507, 10.1002/jsfa.1371
Deighton, 1999, Lipid peroxidation and the oxidative burst associated with infection of Capsicum annuum by Botrytis cinerea, Plant J., 20, 485, 10.1046/j.1365-313x.1999.00622.x
Muckenschnabel, 2001, Markers for oxidative stress associated with soft rots in French beans (Phaseolus vulgaris) infected by Botrytis cinerea, Planta, 212, 376, 10.1007/s004250000401
Muckenschnabel, 2002, Infection of leaves of Arabidopsis thaliana by Botrytis cinerea: changes in ascorbic acid, free radicals and lipid peroxidation products, J. Exp. Bot., 53, 207, 10.1093/jexbot/53.367.207
Rolke, 2004, Functional analysis of H2O2-generating systems in Botrytis cinerea: the major Cu-Zn-superoxide dismutase (BcSOD1) contributes to virulence on French bean, whereas a glucose oxidase (BcGOD1) is dispensable, Mol. Plant Pathol., 5, 17, 10.1111/j.1364-3703.2004.00201.x
Germeier, 1994, The use of pH-indicators in diagnostic media for acid-producing plant pathogens, J. Plant Diseases Protection, 101, 498
Godoy, 1990, Use of mutants to demonstrate the role of oxalic acid in pathogenicity of Sclerotinia sclerotiorum on Phaseolus vulgaris, Physiol. Mol. Plant Pathol., 37, 179, 10.1016/0885-5765(90)90010-U
Harrison, 1980, Production of toxins by Botrytis fabae in relation to growth of lesions on field bean leaves at different humidities, Ann. Appl. Biol., 95, 63, 10.1111/j.1744-7348.1980.tb03971.x
van Baarlen, 2004, Induction of programmed cell death in lily by the fungal pathogen Botrytis elliptica, Mol. Plant Pathol., 5, 559, 10.1111/j.1364-3703.2004.00253.x
Pemberton, 2004, The Nep1-like proteins – a growing family of microbial elicitors of plant necrosis, Mol. Plant Pathol., 5, 353, 10.1111/j.1364-3703.2004.00235.x
Hoeberichts, 2003, A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves, Planta, 217, 517, 10.1007/s00425-003-1049-9
ten Have, 2002, The contribution of cell wall degrading enzymes to pathogenesis of fungal plant pathogens, 341
Wubben, 1999, Cloning and partial characterisation of endopolygalacturonase genes from Botrytis cinerea, Appl. Environ. Microbiol., 65, 1596, 10.1128/AEM.65.4.1596-1602.1999
Wubben, 2000, Regulation of endopolygalacturonase gene expression in Botrytis cinerea by galacturonic acid, ambient pH and carbon catabolite repression, Curr. Genet., 37, 152, 10.1007/s002940050022
ten Have, 2001, Botrytis cinerea endopolygalacturonase genes are differentially expressed in various plant tissues, Fungal Genet. Biol., 33, 97, 10.1006/fgbi.2001.1269
ten Have, 1998, The endopolygalacturonase gene Bcpg1 is required for full virulence of Botrytis cinerea, Mol. Plant Microbe Interact., 11, 1009, 10.1094/MPMI.1998.11.10.1009
Valette-Collet, 2003, Disruption of Botrytis cinerea pectin methylesterase gene Bcpme1 reduces virulence on several host plants, Mol. Plant Microbe Interact., 16, 360, 10.1094/MPMI.2003.16.4.360
Kars, 2005, Functional analysis of Botrytis cinerea pectin methylesterase genes by PCR-based targeted mutagenesis: Bcpme1 and Bcpme2 are dispensable for virulence of strain B05.10, Mol. Plant Pathol., 6, 641, 10.1111/j.1364-3703.2005.00312.x
Espino, 2005, Botrytis cinerea endo-β-1,4-glucanase Cel5A is expressed during infection but is not required for pathogenesis, Physiol. Mol. Plant Pathol., 66, 213, 10.1016/j.pmpp.2005.06.005
Brito, 2006, The endo-β-1,4-xylanase Xyn11A is required for virulence in Botrytis cinerea, Mol. Plant Microbe Interact., 19, 25, 10.1094/MPMI-19-0025
Tudzynski, 2004, Signalling in Botrytis cinerea, 85
Tucker, 2001, Surface attachment and pre-penetration stage development by plant pathogenic fungi, Annu. Rev. Phytopathol, 39, 385, 10.1146/annurev.phyto.39.1.385
Doehlemann, 2005, Molecular and functional characterization of a fructose specific transporter from the gray mold fungus Botrytis cinerea, Fungal Genet. Biol., 42, 601, 10.1016/j.fgb.2005.03.001
Doehlemann, 2006, Different signalling pathways involving a Gα protein, cAMP and a MAP kinase control germination of Botrytis cinerea conidia, Mol. Microbiol., 59, 821, 10.1111/j.1365-2958.2005.04991.x
Zheng, 2000, The BMP1 gene is essential for pathogenicity in the gray mold fungus Botrytis cinerea, Mol. Plant Microbe Interact., 13, 724, 10.1094/MPMI.2000.13.7.724
Gronover, 2001, The role of G protein alpha subunits in the infection process of the gray mold fungus Botrytis cinerea, Mol. Plant Microbe Interact., 14, 1293, 10.1094/MPMI.2001.14.11.1293
Schulze Gronover, 2005, A novel seven-helix transmembrane protein BTP1 of Botrytis cinerea controls the expression of GST-encoding genes, but is not essential for pathogenicity, Mol. Plant Pathol., 6, 243, 10.1111/j.1364-3703.2005.00278.x
Schulze Gronover, 2004, Identification of Botrytis cinerea genes up-regulated during infection and controlled by the Gα subunit BCG1 using suppression subtractive hybridization (SSH), Mol. Plant Microbe Interact., 17, 537, 10.1094/MPMI.2004.17.5.537
Klimpel, 2002, The adenylate cyclase (BAC) in Botrytis cinerea is required for full pathogenicity, Mol. Plant Pathol., 3, 439, 10.1046/j.1364-3703.2002.00137.x
Viaud, 2003, Identification of calcineurin and cyclophilin A-dependent genes by cDNA arrays analysis in the phytopathogenic fungus Botrytis cinerea, Mol. Microbiol., 50, 1451, 10.1046/j.1365-2958.2003.03798.x
Hain, 1993, Disease resistance results from foreign phytoalexin expression in a novel plant, Nature, 361, 153, 10.1038/361153a0
Quidde, 1998, Detoxification of α-tomatine by Botrytis cinerea, Physiol. Mol. Plant Pathol., 52, 151, 10.1006/pmpp.1998.0142
de Waard, 2006, Impact of fungal drug transporters on fungicide sensitivity, multidrug resistance and virulence, Pest Manag. Sci., 62, 195, 10.1002/ps.1150
Powell, 2000, Transgenic expression of pear PGIP in tomato limits fungal colonization, Mol. Plant Microbe Interact., 13, 942, 10.1094/MPMI.2000.13.9.942
Ferrari, 2003, Tandemly duplicated Arabidopsis genes that encode polygalacturonase-inhibiting proteins are regulated coordinately by different signal transduction pathways in response to fungal infection, Plant Cell, 15, 93, 10.1105/tpc.005165
Agüero, 2005, Evaluation of tolerance to Pierce's disease and Botrytis in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene, Mol. Plant Pathol., 6, 43, 10.1111/j.1364-3703.2004.00262.x
Donaldson, 2001, Soybean plants expressing an active oligomeric oxalate oxidase from the wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotinia sclerotiorum, Physiol. Mol. Plant Pathol., 59, 297, 10.1006/pmpp.2001.0369
Dickman, 2001, Abrogation of disease development in plants expressing animal anti-apoptotic genes, Proc. Natl. Acad. Sci. U. S. A., 98, 6957, 10.1073/pnas.091108998
Prins, 2000, Cloning and characterization of a glutathione S-transferase homologue from the filamentous plant pathogenic fungus Botrytis cinerea, Mol. Plant Pathol., 1, 169, 10.1046/j.1364-3703.2000.00021.x
Michielse, 2005, Agrobacterium-mediated transformation as a tool for functional genomics in fungi, Curr. Genet., 48, 1, 10.1007/s00294-005-0578-0
Alonso, 2003, Genome-wide insertional mutagenesis of Arabidopsis thaliana, Science, 301, 653, 10.1126/science.1086391
Kadotani, 2003, RNA silencing in the phytopathogenic fungus Magnaporthe oryzae, Mol. Plant Microbe Interact., 16, 769, 10.1094/MPMI.2003.16.9.769
Fitzgerald, 2004, Simultaneous silencing of multiple genes in the apple scab fungus, Venturia inaequalis, by expression of RNA with chimeric inverted repeats, Fungal Genet. Biol., 41, 963, 10.1016/j.fgb.2004.06.006
Manteau, 2003, Differential regulation by ambient pH of putative virulence factor secretion by the phytopathogenic fungus Botrytis cinerea, FEMS Microbiol. Ecol., 43, 359, 10.1111/j.1574-6941.2003.tb01076.x
ten Have, 2004, An aspartic proteinase gene family in the filamentous fungus Botrytis cinerea contains members with novel features, Microbiology, 150, 2475, 10.1099/mic.0.27058-0
Prins, 2000, Infection strategies of Botrytis cinerea and related necrotrophic pathogens, 33
Cessna, 2000, Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant, Plant Cell, 12, 2191, 10.1105/tpc.12.11.2191