Environmental impact of the production of graphene oxide and reduced graphene oxide
Tóm tắt
Từ khóa
Tài liệu tham khảo
Solís-Fernández P, Bissett M, Ago H (2017) Synthesis, structure and applications of graphene-based 2D heterostructures. Chem Soc Rev 46:4572–4613. https://doi.org/10.1039/C7CS00160F
Zhang Y, Mori T, Niu L, Ye J (2011) Non-covalent doping of graphitic carbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion. Energy Environ Sci 4:4517–4521. https://doi.org/10.1039/C1EE01400E
Lv S, Ma Y, Qiu C et al (2013) Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr Build Mater 49:121–127. https://doi.org/10.1016/j.conbuildmat.2013.08.022
Chuah S, Pan Z, Sanjayan JG et al (2014) Nano reinforced cement and concrete composites and new perspective from graphene oxide. Constr Build Mater 73:113–124. https://doi.org/10.1016/j.conbuildmat.2014.09.040
Lin J-S, Kumar SR, Ma W-T et al (2017) Gradiently distributed iron oxide@graphene oxide nanofillers in quaternized polyvinyl alcohol composite to enhance alkaline fuel cell power density. J Membr Sci 543:28–39. https://doi.org/10.1016/j.memsci.2017.08.045
Zhang Y, Liu L, der Bruggen BV, Yang F (2017) Nanocarbon based composite electrodes and their application in microbial fuel cells. J Mater Chem A 5:12673–12698. https://doi.org/10.1039/C7TA01511A
Upadhyay RK, Soin N, Roy SS (2013) Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review. RSC Adv 4:3823–3851. https://doi.org/10.1039/C3RA45013A
Zeng X, Wang G, Liu Y, Zhang X (2017) Graphene-based antimicrobial nanomaterials: rational design and applications for water disinfection and microbial control. Environ Sci Nano. https://doi.org/10.1039/C7EN00583K
Liu P, Yan T, Shi L et al (2017) Graphene-based materials for capacitive deionization. J Mater Chem A 5:13907–13943. https://doi.org/10.1039/C7TA02653F
Srivastava M, Singh J, Kuila T et al (2015) Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries. Nanoscale 7:4820–4868. https://doi.org/10.1039/C4NR07068B
Sun Y, Tang J, Zhang K et al (2017) Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries. Nanoscale 9:2585–2595. https://doi.org/10.1039/C6NR07650E
Liu J-Y, Li X-X, Huang J-R et al (2017) Three-dimensional graphene-based nanocomposites for high energy density Li-ion batteries. J Mater Chem A 5:5977–5994. https://doi.org/10.1039/C7TA00448F
Cai X, Lai L, Shen Z, Lin J (2017) Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells. J Mater Chem A 5:15423–15446. https://doi.org/10.1039/C7TA04354F
Scalia A, Bella F, Lamberti A et al (2017) A flexible and portable powerpack by solid-state supercapacitor and dye-sensitized solar cell integration. J Power Sources 359:311–321. https://doi.org/10.1016/j.jpowsour.2017.05.072
Zhang X, Fan X, Yan C et al (2012) Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. ACS Appl Mater Interfaces 4:1543–1552. https://doi.org/10.1021/am201757v
Yavari F, Rafiee MA, Rafiee J et al (2010) Dramatic increase in fatigue life in hierarchical graphene composites. ACS Appl Mater Interfaces 2:2738–2743. https://doi.org/10.1021/am100728r
Sun X, Liu Z, Welsher K et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212. https://doi.org/10.1007/s12274-008-8021-8
Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1. https://doi.org/10.1007/s00604-011-0639-7
Valles Romero JA, Cuaya-Simbro G, Morales Maldonado ER (2016) Optimizing content graphene oxide in high strength concrete. Int J Sci Res Manag IJSRM 4:4324–4332
Devasena SM, Karthikeyan K (2015) Investigation on strength properties of graphene oxide concrete. Int J Eng Sci Invent Res Dev 1:307–310
Yao P, Chen P, Jiang L et al (2010) Electric current induced reduction of graphene oxide and its application as gap electrodes in organic photoswitching devices. Adv Mater 22:5008–5012. https://doi.org/10.1002/adma.201002312
Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814. https://doi.org/10.1021/nn1006368
Swiss Centre for Life Cycle Inventories (2013) Ecoinvent Database. http://www.ecoinvent.org/database/. Accessed 23 Sep 2013
Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nature 442:282–286. https://doi.org/10.1038/nature04969
Cano M, Khan U, Sainsbury T et al (2013) Improving the mechanical properties of graphene oxide based materials by covalent attachment of polymer chains. Carbon 52:363–371. https://doi.org/10.1016/j.carbon.2012.09.046
Wang H, Cui L-F, Yang Y et al (2010) Mn3O4–graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978–13980. https://doi.org/10.1021/ja105296a
Jiang Y, Wei M, Feng J et al (2016) Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. Energy Environ Sci 9:1430–1438. https://doi.org/10.1039/C5EE03262H
Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896
Viculis LM, Mack JJ, Kaner RB (2003) A chemical route to carbon nanoscrolls. Science 299:1361. https://doi.org/10.1126/science.1078842
Coleman JN, Lotya M, O’Neill A et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571. https://doi.org/10.1126/science.1194975
Hernandez Y, Nicolosi V, Lotya M et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568. https://doi.org/10.1038/nnano.2008.215
Aghigh A, Alizadeh V, Wong HY et al (2015) Recent advances in utilization of graphene for filtration and desalination of water: a review. Desalination 365:389–397. https://doi.org/10.1016/j.desal.2015.03.024
Ning F, Shao M, Xu S et al (2016) TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting. Energy Environ Sci 9:2633–2643. https://doi.org/10.1039/C6EE01092J
Li R-Z, Peng R, Kihm KD et al (2016) High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes. Energy Environ Sci 9:1458–1467. https://doi.org/10.1039/C5EE03637B
Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274. https://doi.org/10.1038/nnano.2008.83
Cai J, Ruffieux P, Jaafar R et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473. https://doi.org/10.1038/nature09211
Wang G, Yang J, Park J et al (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195. https://doi.org/10.1021/jp710931h
Mei X, Zheng H, Ouyang J (2012) Ultrafast reduction of graphene oxide with Zn powder in neutral and alkaline solutions at room temperature promoted by the formation of metal complexes. J Mater Chem 22:9109–9116. https://doi.org/10.1039/C2JM30552F
Arvidsson R, Kushnir D, Sandén BA, Molander S (2014) Prospective life cycle assessment of graphene production by ultrasonication and chemical reduction. Environ Sci Technol 48:4529–4536. https://doi.org/10.1021/es405338k
Arvidsson R, Molander S (2017) Prospective life cycle assessment of epitaxial graphene production at different manufacturing scales and maturity. J Ind Ecol 21:1153–1164. https://doi.org/10.1111/jiec.12526
Cossutta M, McKechnie J, Pickering SJ (2017) A comparative LCA of different graphene production routes. Green Chem 19:5874–5884. https://doi.org/10.1039/C7GC02444D
Du Q, Zheng M, Zhang L et al (2010) Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors. Electrochim Acta 55:3897–3903. https://doi.org/10.1016/j.electacta.2010.01.089
Novoselov KS, Jiang D, Schedin F et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci 102:10451–10453. https://doi.org/10.1073/pnas.0502848102
Novoselov KS, Geim AK, Morozov SV et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200. https://doi.org/10.1038/nature04233
Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:782–796. https://doi.org/10.1039/C1CS15172J
Cano M, Benito AM, Urriolabeitia EP et al (2013) Reduced graphene oxide: firm support for catalytically active palladium nanoparticles and game changer in selective hydrogenation reactions. Nanoscale 5:10189–10193. https://doi.org/10.1039/C3NR02822D
Berger C, Song Z, Li X et al (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196. https://doi.org/10.1126/science.1125925
Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35:52–71. https://doi.org/10.1080/10408430903505036
Hernández R, Vallés C, Benito AM et al (2014) Graphene-based potentiometric biosensor for the immediate detection of living bacteria. Biosens Bioelectron 54:553–557. https://doi.org/10.1016/j.bios.2013.11.053
Gilje S, Han S, Wang M et al (2007) A chemical route to graphene for device applications. Nano Lett 7:3394–3398. https://doi.org/10.1021/nl0717715
Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034
Brodie BC (1859) On the atomic weight of graphite. Proc R Soc Lond 10:11–12. https://doi.org/10.1098/rspl.1859.0007
Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339. https://doi.org/10.1021/ja01539a017
Tomović Ž, Watson MD, Müllen K (2004) Superphenalene-based columnar liquid crystals. Angew Chem Int Ed 43:755–758. https://doi.org/10.1002/anie.200352855
Treier M, Pignedoli CA, Laino T et al (2011) Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. Nat Chem 3:61–67. https://doi.org/10.1038/nchem.891
Wang Y, Xie L, Sha J et al (2011) Preparation and chemical reduction of laurylamine-intercalated graphite oxide. J Mater Sci 46:3611–3621. https://doi.org/10.1007/s10853-011-5277-2
Staudenmaier L (1898) Verfahren zur Darstellung der Graphitsäure. Ber Dtsch Chem Ges 31:1481–1487. https://doi.org/10.1002/cber.18980310237
Mattevi C, Eda G, Agnoli S et al (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Funct Mater 19:2577–2583. https://doi.org/10.1002/adfm.200900166
Chen J, Yao B, Li C, Shi G (2013) An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229. https://doi.org/10.1016/j.carbon.2013.07.055
Acik M, Lee G, Mattevi C et al (2011) The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy. J Phys Chem C 115:19761–19781. https://doi.org/10.1021/jp2052618
Vallés C, David Núñez J, Benito AM, Maser WK (2012) Flexible conductive graphene paper obtained by direct and gentle annealing of graphene oxide paper. Carbon 50:835–844. https://doi.org/10.1016/j.carbon.2011.09.042
Sorokina NE, Khaskov MA, Avdeev VV, Nikol’skaya IV (2005) Reaction of graphite with sulfuric acid in the presence of KMnO4. Russ J Gen Chem 75:162–168. https://doi.org/10.1007/s11176-005-0191-4
Dreyer DR, Park S, Bielawski CW, Ruoff RS (2009) The chemistry of graphene oxide. Chem Soc Rev 39:228–240. https://doi.org/10.1039/B917103G
Cao N, Zhang Y, Cao N, Zhang Y (2015) Study of reduced graphene oxide preparation by Hummers’s method and related characterization. J Nanomater J Nanomater 2015:e168125. https://doi.org/10.1155/2015/168125
Geisler G, Hofstetter TB, Hungerbühler K (2004) Production of fine and speciality chemicals: procedure for the estimation of LCIs. Int J Life Cycle Assess 9:101–113. https://doi.org/10.1007/BF02978569
Kuila T, Bose S, Khanra P et al (2012) A green approach for the reduction of graphene oxide by wild carrot root. Carbon 50:914–921. https://doi.org/10.1016/j.carbon.2011.09.053
Hauschild MZ, Goedkoop M, Guinée J et al (2012) Identifying best existing practice for characterization modeling in life cycle impact assessment. Int J Life Cycle Assess 18:683–697. https://doi.org/10.1007/s11367-012-0489-5
Silva GA, Kulay LA (2003) Application of life cycle assessment to the LCA case studies single superphosphate production. Int J Life Cycle Assess 8:209–214. https://doi.org/10.1007/BF02978473
Arvidsson R (2017) Review of environmental life cycle assessment studies of graphene production. Adv Mater Lett 8:187–195. https://doi.org/10.5185/amlett.2017.1413
European Commission (2013) Critical raw materials for the EU: Report of the Ad-hoc Working Group on defining critical raw materials. https://ec.europa.eu/growth/tools-databases/eip-raw-materials/en/community/document/critical-raw-materials-eu-report-ad-hoc-working-group-defining-critical-raw. 8 Nov 2013
Zurutuza A, Marinelli C (2014) Challenges and opportunities in graphene commercialization. Nat Nanotechnol 9:730
Fisher E (2013) Graphene market set for 40% annual growth. Lux research. http://www.luxresearchinc.com. 17 Jan 2013