Environmental impact of the production of graphene oxide and reduced graphene oxide

Lucía Serrano-Luján1, Sandra Víctor-Román2, Carlos Juárez Toledo3, Olga Sanahuja‐Parejo2, Ahmed E. Mansour4, José Antonio Abad3, Aram Amassian4, Ana M. Benito2, Wolfgang K. Maser2, Antonio Urbina3
1Department of Computing Science, King Juan Carlos University, 28933, Madrid, Spain
2Instituto de Carboquímica (ICB-CSIC), 50018 Zaragoza, Spain
3Departments of Electronics and Applied Physics, Technical University of Cartagena (UPCT), Plaza del Hospital 1, 30202, Cartagena, Spain
4KAUST Solar Center (KSC), and Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Solís-Fernández P, Bissett M, Ago H (2017) Synthesis, structure and applications of graphene-based 2D heterostructures. Chem Soc Rev 46:4572–4613. https://doi.org/10.1039/C7CS00160F

Zhang Y, Mori T, Niu L, Ye J (2011) Non-covalent doping of graphitic carbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion. Energy Environ Sci 4:4517–4521. https://doi.org/10.1039/C1EE01400E

Lv S, Ma Y, Qiu C et al (2013) Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites. Constr Build Mater 49:121–127. https://doi.org/10.1016/j.conbuildmat.2013.08.022

Chuah S, Pan Z, Sanjayan JG et al (2014) Nano reinforced cement and concrete composites and new perspective from graphene oxide. Constr Build Mater 73:113–124. https://doi.org/10.1016/j.conbuildmat.2014.09.040

Lin J-S, Kumar SR, Ma W-T et al (2017) Gradiently distributed iron oxide@graphene oxide nanofillers in quaternized polyvinyl alcohol composite to enhance alkaline fuel cell power density. J Membr Sci 543:28–39. https://doi.org/10.1016/j.memsci.2017.08.045

Zhang Y, Liu L, der Bruggen BV, Yang F (2017) Nanocarbon based composite electrodes and their application in microbial fuel cells. J Mater Chem A 5:12673–12698. https://doi.org/10.1039/C7TA01511A

Upadhyay RK, Soin N, Roy SS (2013) Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: a review. RSC Adv 4:3823–3851. https://doi.org/10.1039/C3RA45013A

Zeng X, Wang G, Liu Y, Zhang X (2017) Graphene-based antimicrobial nanomaterials: rational design and applications for water disinfection and microbial control. Environ Sci Nano. https://doi.org/10.1039/C7EN00583K

Liu P, Yan T, Shi L et al (2017) Graphene-based materials for capacitive deionization. J Mater Chem A 5:13907–13943. https://doi.org/10.1039/C7TA02653F

Srivastava M, Singh J, Kuila T et al (2015) Recent advances in graphene and its metal-oxide hybrid nanostructures for lithium-ion batteries. Nanoscale 7:4820–4868. https://doi.org/10.1039/C4NR07068B

Sun Y, Tang J, Zhang K et al (2017) Comparison of reduction products from graphite oxide and graphene oxide for anode applications in lithium-ion batteries and sodium-ion batteries. Nanoscale 9:2585–2595. https://doi.org/10.1039/C6NR07650E

Liu J-Y, Li X-X, Huang J-R et al (2017) Three-dimensional graphene-based nanocomposites for high energy density Li-ion batteries. J Mater Chem A 5:5977–5994. https://doi.org/10.1039/C7TA00448F

Cai X, Lai L, Shen Z, Lin J (2017) Graphene and graphene-based composites as Li-ion battery electrode materials and their application in full cells. J Mater Chem A 5:15423–15446. https://doi.org/10.1039/C7TA04354F

Scalia A, Bella F, Lamberti A et al (2017) A flexible and portable powerpack by solid-state supercapacitor and dye-sensitized solar cell integration. J Power Sources 359:311–321. https://doi.org/10.1016/j.jpowsour.2017.05.072

Zhang X, Fan X, Yan C et al (2012) Interfacial microstructure and properties of carbon fiber composites modified with graphene oxide. ACS Appl Mater Interfaces 4:1543–1552. https://doi.org/10.1021/am201757v

Yavari F, Rafiee MA, Rafiee J et al (2010) Dramatic increase in fatigue life in hierarchical graphene composites. ACS Appl Mater Interfaces 2:2738–2743. https://doi.org/10.1021/am100728r

Sun X, Liu Z, Welsher K et al (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1:203–212. https://doi.org/10.1007/s12274-008-8021-8

Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1. https://doi.org/10.1007/s00604-011-0639-7

Valles Romero JA, Cuaya-Simbro G, Morales Maldonado ER (2016) Optimizing content graphene oxide in high strength concrete. Int J Sci Res Manag IJSRM 4:4324–4332

Devasena SM, Karthikeyan K (2015) Investigation on strength properties of graphene oxide concrete. Int J Eng Sci Invent Res Dev 1:307–310

Yao P, Chen P, Jiang L et al (2010) Electric current induced reduction of graphene oxide and its application as gap electrodes in organic photoswitching devices. Adv Mater 22:5008–5012. https://doi.org/10.1002/adma.201002312

Marcano DC, Kosynkin DV, Berlin JM et al (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814. https://doi.org/10.1021/nn1006368

Swiss Centre for Life Cycle Inventories (2013) Ecoinvent Database. http://www.ecoinvent.org/database/. Accessed 23 Sep 2013

Stankovich S, Dikin DA, Dommett GHB et al (2006) Graphene-based composite materials. Nature 442:282–286. https://doi.org/10.1038/nature04969

Cano M, Khan U, Sainsbury T et al (2013) Improving the mechanical properties of graphene oxide based materials by covalent attachment of polymer chains. Carbon 52:363–371. https://doi.org/10.1016/j.carbon.2012.09.046

Wang H, Cui L-F, Yang Y et al (2010) Mn3O4–graphene hybrid as a high-capacity anode material for lithium ion batteries. J Am Chem Soc 132:13978–13980. https://doi.org/10.1021/ja105296a

Jiang Y, Wei M, Feng J et al (2016) Enhancing the cycling stability of Na-ion batteries by bonding SnS2 ultrafine nanocrystals on amino-functionalized graphene hybrid nanosheets. Energy Environ Sci 9:1430–1438. https://doi.org/10.1039/C5EE03262H

Novoselov KS, Geim AK, Morozov SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. https://doi.org/10.1126/science.1102896

Viculis LM, Mack JJ, Kaner RB (2003) A chemical route to carbon nanoscrolls. Science 299:1361. https://doi.org/10.1126/science.1078842

Coleman JN, Lotya M, O’Neill A et al (2011) Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331:568–571. https://doi.org/10.1126/science.1194975

Hernandez Y, Nicolosi V, Lotya M et al (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568. https://doi.org/10.1038/nnano.2008.215

Aghigh A, Alizadeh V, Wong HY et al (2015) Recent advances in utilization of graphene for filtration and desalination of water: a review. Desalination 365:389–397. https://doi.org/10.1016/j.desal.2015.03.024

Ning F, Shao M, Xu S et al (2016) TiO2/graphene/NiFe-layered double hydroxide nanorod array photoanodes for efficient photoelectrochemical water splitting. Energy Environ Sci 9:2633–2643. https://doi.org/10.1039/C6EE01092J

Li R-Z, Peng R, Kihm KD et al (2016) High-rate in-plane micro-supercapacitors scribed onto photo paper using in situ femtolaser-reduced graphene oxide/Au nanoparticle microelectrodes. Energy Environ Sci 9:1458–1467. https://doi.org/10.1039/C5EE03637B

Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274. https://doi.org/10.1038/nnano.2008.83

Cai J, Ruffieux P, Jaafar R et al (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473. https://doi.org/10.1038/nature09211

Wang G, Yang J, Park J et al (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195. https://doi.org/10.1021/jp710931h

Mei X, Zheng H, Ouyang J (2012) Ultrafast reduction of graphene oxide with Zn powder in neutral and alkaline solutions at room temperature promoted by the formation of metal complexes. J Mater Chem 22:9109–9116. https://doi.org/10.1039/C2JM30552F

Arvidsson R, Kushnir D, Sandén BA, Molander S (2014) Prospective life cycle assessment of graphene production by ultrasonication and chemical reduction. Environ Sci Technol 48:4529–4536. https://doi.org/10.1021/es405338k

Arvidsson R, Molander S (2017) Prospective life cycle assessment of epitaxial graphene production at different manufacturing scales and maturity. J Ind Ecol 21:1153–1164. https://doi.org/10.1111/jiec.12526

Cossutta M, McKechnie J, Pickering SJ (2017) A comparative LCA of different graphene production routes. Green Chem 19:5874–5884. https://doi.org/10.1039/C7GC02444D

Du Q, Zheng M, Zhang L et al (2010) Preparation of functionalized graphene sheets by a low-temperature thermal exfoliation approach and their electrochemical supercapacitive behaviors. Electrochim Acta 55:3897–3903. https://doi.org/10.1016/j.electacta.2010.01.089

Novoselov KS, Jiang D, Schedin F et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci 102:10451–10453. https://doi.org/10.1073/pnas.0502848102

Novoselov KS, Geim AK, Morozov SV et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200. https://doi.org/10.1038/nature04233

Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:782–796. https://doi.org/10.1039/C1CS15172J

Cano M, Benito AM, Urriolabeitia EP et al (2013) Reduced graphene oxide: firm support for catalytically active palladium nanoparticles and game changer in selective hydrogenation reactions. Nanoscale 5:10189–10193. https://doi.org/10.1039/C3NR02822D

Berger C, Song Z, Li X et al (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312:1191–1196. https://doi.org/10.1126/science.1125925

Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State Mater Sci 35:52–71. https://doi.org/10.1080/10408430903505036

Hernández R, Vallés C, Benito AM et al (2014) Graphene-based potentiometric biosensor for the immediate detection of living bacteria. Biosens Bioelectron 54:553–557. https://doi.org/10.1016/j.bios.2013.11.053

Gilje S, Han S, Wang M et al (2007) A chemical route to graphene for device applications. Nano Lett 7:3394–3398. https://doi.org/10.1021/nl0717715

Stankovich S, Dikin DA, Piner RD et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565. https://doi.org/10.1016/j.carbon.2007.02.034

Brodie BC (1859) On the atomic weight of graphite. Proc R Soc Lond 10:11–12. https://doi.org/10.1098/rspl.1859.0007

Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339. https://doi.org/10.1021/ja01539a017

Tomović Ž, Watson MD, Müllen K (2004) Superphenalene-based columnar liquid crystals. Angew Chem Int Ed 43:755–758. https://doi.org/10.1002/anie.200352855

Treier M, Pignedoli CA, Laino T et al (2011) Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. Nat Chem 3:61–67. https://doi.org/10.1038/nchem.891

Wang Y, Xie L, Sha J et al (2011) Preparation and chemical reduction of laurylamine-intercalated graphite oxide. J Mater Sci 46:3611–3621. https://doi.org/10.1007/s10853-011-5277-2

Staudenmaier L (1898) Verfahren zur Darstellung der Graphitsäure. Ber Dtsch Chem Ges 31:1481–1487. https://doi.org/10.1002/cber.18980310237

Mattevi C, Eda G, Agnoli S et al (2009) Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv Funct Mater 19:2577–2583. https://doi.org/10.1002/adfm.200900166

Chen J, Yao B, Li C, Shi G (2013) An improved Hummers method for eco-friendly synthesis of graphene oxide. Carbon 64:225–229. https://doi.org/10.1016/j.carbon.2013.07.055

Acik M, Lee G, Mattevi C et al (2011) The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy. J Phys Chem C 115:19761–19781. https://doi.org/10.1021/jp2052618

Vallés C, David Núñez J, Benito AM, Maser WK (2012) Flexible conductive graphene paper obtained by direct and gentle annealing of graphene oxide paper. Carbon 50:835–844. https://doi.org/10.1016/j.carbon.2011.09.042

Sorokina NE, Khaskov MA, Avdeev VV, Nikol’skaya IV (2005) Reaction of graphite with sulfuric acid in the presence of KMnO4. Russ J Gen Chem 75:162–168. https://doi.org/10.1007/s11176-005-0191-4

Dreyer DR, Park S, Bielawski CW, Ruoff RS (2009) The chemistry of graphene oxide. Chem Soc Rev 39:228–240. https://doi.org/10.1039/B917103G

Cao N, Zhang Y, Cao N, Zhang Y (2015) Study of reduced graphene oxide preparation by Hummers’s method and related characterization. J Nanomater J Nanomater 2015:e168125. https://doi.org/10.1155/2015/168125

Geisler G, Hofstetter TB, Hungerbühler K (2004) Production of fine and speciality chemicals: procedure for the estimation of LCIs. Int J Life Cycle Assess 9:101–113. https://doi.org/10.1007/BF02978569

Kuila T, Bose S, Khanra P et al (2012) A green approach for the reduction of graphene oxide by wild carrot root. Carbon 50:914–921. https://doi.org/10.1016/j.carbon.2011.09.053

Hauschild MZ, Goedkoop M, Guinée J et al (2012) Identifying best existing practice for characterization modeling in life cycle impact assessment. Int J Life Cycle Assess 18:683–697. https://doi.org/10.1007/s11367-012-0489-5

Silva GA, Kulay LA (2003) Application of life cycle assessment to the LCA case studies single superphosphate production. Int J Life Cycle Assess 8:209–214. https://doi.org/10.1007/BF02978473

Arvidsson R (2017) Review of environmental life cycle assessment studies of graphene production. Adv Mater Lett 8:187–195. https://doi.org/10.5185/amlett.2017.1413

European Commission (2013) Critical raw materials for the EU: Report of the Ad-hoc Working Group on defining critical raw materials. https://ec.europa.eu/growth/tools-databases/eip-raw-materials/en/community/document/critical-raw-materials-eu-report-ad-hoc-working-group-defining-critical-raw. 8 Nov 2013

Zurutuza A, Marinelli C (2014) Challenges and opportunities in graphene commercialization. Nat Nanotechnol 9:730

Fisher E (2013) Graphene market set for 40% annual growth. Lux research. http://www.luxresearchinc.com. 17 Jan 2013