A spatial decay in the linear theory of microstretch piezoelectricity
Tài liệu tham khảo
Heidary, 2005, Pyroelectric effect on dynamic response of coupled distributed piezothermoelastic composite plate, J. Thermal Stresses, 28, 285, 10.1080/01495730590909441
Nowacki, 1978, Some general theorems of thermopiezoelectricity, J. Thermal Stresses, 1, 171, 10.1080/01495737808926940
Batra, 1995, Saint-Venant’s principle in linear piezoelectricity, J. Elasticity, 38, 209, 10.1007/BF00042498
Eringen, 2004, Electromagnetic theory of microstretch elasticity and bone modeling, Internat. J. Engrg. Sci., 42, 231, 10.1016/S0020-7225(03)00288-X
Eringen, 1999
Ieşan, 2006, On the microstretch piezoelectricity, Internat. J. Engrg. Sci., 44, 819, 10.1016/j.ijengsci.2006.05.007
Ieşan, 2007, Some theorems in the theory of microstretch thermopiezoelectricity, Internat. J. Engrg. Sci., 45, 1, 10.1016/j.ijengsci.2006.10.001
Batra, 1996, Saint-Venant’s principle for a helical piezoelectricity body, J. Elasticity, 43, 69, 10.1007/BF00042455
Borrelli, 2001, Saint-Venant end effects in anti-plane shear deformations of linear piezoelectric materials, J. Elasticity, 64, 217, 10.1023/A:1015222621504
Borrelli, 2002, Saint-Venant’s principle for anti-plane shear deformations of linear piezoelectric materials, SIAM J. Appl. Math., 62, 2027, 10.1137/S0036139901392506
Borrelli, 2003, End effects for pre-stressed and pre-polarized piezoelectric solids in anti-plane shear, J. Appl. Math. Phys. (ZAMP), 54, 797, 10.1007/s00033-003-3201-6
Borrelli, 2004, Exponential decay of end effects in anti-plane shear for functionally graded piezoelectric materials, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460, 1193, 10.1098/rspa.2003.1201
Horgan, 1984, Spatial decay estimates in transient heat conduction, Quart. Appl. Math., 42, 119, 10.1090/qam/736512
Flavin, 1989, Energy bounds in dynamical problems for a semi-infinite elastic beam, 101
Quintanilla, 2001, End effects in thermoelasticity, Math. Methods Appl. Sci., 24, 93, 10.1002/1099-1476(20010125)24:2<93::AID-MMA199>3.0.CO;2-N
Quintanilla, 2006, Spatial behaviour for a fourth-order dispersive equation, Quart. Appl. Math., 64, 547, 10.1090/S0033-569X-06-01025-2
R. Quintanilla, G. Saccomandi, Quasistatic anti-plane motions in the simplest theory of nonlinear elasticity, Nonlinear Anal. R. W. A. (2007) (in press), doi: 10.106/j.nonrwa.2007.03.020