A spatial decay in the linear theory of microstretch piezoelectricity

Mathematical and Computer Modelling - Tập 47 - Trang 1117-1124 - 2008
R. Quintanilla1
1Matematica Aplicada 2, ETSEIAT-UPC, 08222 Terrassa, Barcelona, Spain

Tài liệu tham khảo

Heidary, 2005, Pyroelectric effect on dynamic response of coupled distributed piezothermoelastic composite plate, J. Thermal Stresses, 28, 285, 10.1080/01495730590909441 Nowacki, 1978, Some general theorems of thermopiezoelectricity, J. Thermal Stresses, 1, 171, 10.1080/01495737808926940 Batra, 1995, Saint-Venant’s principle in linear piezoelectricity, J. Elasticity, 38, 209, 10.1007/BF00042498 Eringen, 2004, Electromagnetic theory of microstretch elasticity and bone modeling, Internat. J. Engrg. Sci., 42, 231, 10.1016/S0020-7225(03)00288-X Eringen, 1999 Ieşan, 2006, On the microstretch piezoelectricity, Internat. J. Engrg. Sci., 44, 819, 10.1016/j.ijengsci.2006.05.007 Ieşan, 2007, Some theorems in the theory of microstretch thermopiezoelectricity, Internat. J. Engrg. Sci., 45, 1, 10.1016/j.ijengsci.2006.10.001 Batra, 1996, Saint-Venant’s principle for a helical piezoelectricity body, J. Elasticity, 43, 69, 10.1007/BF00042455 Borrelli, 2001, Saint-Venant end effects in anti-plane shear deformations of linear piezoelectric materials, J. Elasticity, 64, 217, 10.1023/A:1015222621504 Borrelli, 2002, Saint-Venant’s principle for anti-plane shear deformations of linear piezoelectric materials, SIAM J. Appl. Math., 62, 2027, 10.1137/S0036139901392506 Borrelli, 2003, End effects for pre-stressed and pre-polarized piezoelectric solids in anti-plane shear, J. Appl. Math. Phys. (ZAMP), 54, 797, 10.1007/s00033-003-3201-6 Borrelli, 2004, Exponential decay of end effects in anti-plane shear for functionally graded piezoelectric materials, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 460, 1193, 10.1098/rspa.2003.1201 Horgan, 1984, Spatial decay estimates in transient heat conduction, Quart. Appl. Math., 42, 119, 10.1090/qam/736512 Flavin, 1989, Energy bounds in dynamical problems for a semi-infinite elastic beam, 101 Quintanilla, 2001, End effects in thermoelasticity, Math. Methods Appl. Sci., 24, 93, 10.1002/1099-1476(20010125)24:2<93::AID-MMA199>3.0.CO;2-N Quintanilla, 2006, Spatial behaviour for a fourth-order dispersive equation, Quart. Appl. Math., 64, 547, 10.1090/S0033-569X-06-01025-2 R. Quintanilla, G. Saccomandi, Quasistatic anti-plane motions in the simplest theory of nonlinear elasticity, Nonlinear Anal. R. W. A. (2007) (in press), doi: 10.106/j.nonrwa.2007.03.020