Nonstationary solutions of a generalized Korteweg-de Vries-Burgers equation

Proceedings of the Steklov Institute of Mathematics - Tập 281 - Trang 204-212 - 2013
A. P. Chugainova1
1Steklov Institute of Mathematics, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

Nonstationary solutions of the Cauchy problem are found for a model equation that includes complicated nonlinearity, dispersion, and dissipation terms and can describe the propagation of nonlinear longitudinal waves in rods. Earlier, within this model, complex behavior of traveling waves has been revealed; it can be regarded as discontinuity structures in solutions of the same equation that ignores dissipation and dispersion. As a result, for standard self-similar problems whose solutions are constructed from a sequence of Riemann waves and shock waves with stationary structure, these solutions become multivalued. The interaction of counterpropagating (or copropagating) nonlinear waves is studied in the case when the corresponding self-similar problems on the collision of discontinuities have a nonunique solution. In addition, situations are considered when the interaction of waves for large times gives rise to asymptotics containing discontinuities with nonstationary periodic oscillating structure.

Tài liệu tham khảo

I. M. Gel’fand, “Some problems in the theory of quasilinear equations,” Usp. Mat. Nauk 14(2), 87–158 (1959) [Am. Math. Soc. Transl., Ser. 2, 29, 295–381 (1963)]. S. K. Godunov, “On nonunique ‘blurring’ of discontinuities in solutions of quasilinear systems,” Dokl. Akad. Nauk SSSR 136(2), 272–273 (1961) [Sov. Math., Dokl. 2, 43–44 (1961)]. S. K. Godunov and E. I. Romenskii, Elements of Continuum Mechanics and Conservation Laws (Nauchn. Kniga, Novosibirsk, 1998; Kluwer, New York, 2003). A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; Chapman & Hall/CRC, Boca Raton, FL, 2001). A. G. Kulikovskii, “A possible effect of oscillations in the structure of a discontinuity on the set of admissible discontinuities,” Dokl. Akad. Nauk SSSR 275(6), 1349–1352 (1984) [Sov. Phys., Dokl. 29, 283–285 (1984)]. A. G. Kulikovskii, “Surfaces of discontinuity separating two perfect media of different properties: Recombination waves in magnetohydrodynamics,” Prikl. Mat. Mekh. 32(6), 1125–1131 (1968) [J. Appl. Math. Mech. 32, 1145–1152 (1968)]. A. G. Kulikovskii and E. I. Sveshnikova, Nonlinear Waves in Elastic Media (Mosk. Litsei, Moscow, 1998; CRC Press, Boca Raton, FL, 1995). A. G. Kulikovskii and A. P. Chugainova, “Classical and non-classical discontinuities in solutions of equations of non-linear elasticity theory,” Usp. Mat. Nauk 63(2), 85–152 (2008) [Russ. Math. Surv. 63, 283–350 (2008)]. A. G. Kulikovskii and A. P. Chugainova, “On the steady-state structure of shock waves in elastic media and dielectrics,” Zh. Eksp. Teor. Fiz. 137(5), 973–985 (2010) [J. Exp. Theor. Phys. 110, 851–862 (2010)]. A. G. Kulikovskii and N. I. Gvozdovskaya, “The effect of dispersion on the set of admissible discontinuities in continuum mechanics,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 223, 63–73 (1998) [Proc. Steklov Inst. Math. 223, 55–65 (1998)]. A. G. Kulikovskii and A. P. Chugainova, “Simulation of the influence of small-scale dispersion processes in a continuum on the formation of large-scale phenomena,” Zh. Vychisl. Mat. Mat. Fiz. 44(6), 1119–1126 (2004) [Comput. Math. Math. Phys. 44, 1062–1068 (2004)]. O. A. Oleinik, “Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation,” Usp. Mat. Nauk 14(2), 165–170 (1959) [Am. Math. Soc. Transl., Ser. 2, 33, 285–290 (1963)].