Precipitation of Zn(II), Cu(II) and Pb(II) at bench-scale using biogenic hydrogen sulfide from the utilization of volatile fatty acids
Tài liệu tham khảo
Avery, 1993, Mechanism of adsorption of hard and soft metal ions to Saccharomyces cerevisae and influence of hard and soft anions, Appl. Environ. Microbiol., 59, 2851, 10.1128/AEM.59.9.2851-2856.1993
Brady, 1994, Chemical and enzymatic extraction of heavy metal binding polymers from isolated cell walls of Saccharomyces cerevisae, Biotechnol. Bioeng., 44, 297, 10.1002/bit.260440307
Brady, 1994, Bioaccumulation of metal cations by Saccharomyces cerevisae, Appl. Microbiol. Biotechnol., 41, 149, 10.1007/BF00166098
Brierley, 1990, Bioremediation of metal-contaminated surface and groundwaters, Geomicrobiol. J., 8, 201, 10.1080/01490459009377894
Buchauer, 1998, A comparison of two simple titration procedures to determine volatile fatty acids in influents to waste-water and sludge treatment processes, Water SA, 24, 49
Cord-Ruwisch, 1985, A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria, J. Microbiol. Methods, 4, 33, 10.1016/0167-7012(85)90005-3
Chang, 2000, Biological treatment of acid mine drainage under sulphate reducing conditions with solid waste materials as substrate, Water Res., 34, 1269, 10.1016/S0043-1354(99)00268-7
Chen, 2000, Studies on biosorption of zinc(II) and copper(II) on Desulfovibrio desulfuricans, Int. Biodeterior. Biodegrad., 46, 11, 10.1016/S0964-8305(00)00054-8
Christensen, 1996, Treatment of acid mine water by sulfate-reducing bacteria: results from a bench scale experiment, Water Res., 30, 1617, 10.1016/0043-1354(96)00049-8
Daly, 2000, Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacteria, Microbiology, 146, 1693, 10.1099/00221287-146-7-1693
Dvorak, 1992, Treatment of metal-contaminated water using bacterial sulfate reduction: results from pilot scale reactors, Biotechnol. Bioeng., 40, 609, 10.1002/bit.260400508
Elliott, 1998, Growth of sulfate-reducing bacteria under acidic conditions in an anaerobic bioreactor as a treatment system for acid mine drainage, Water Res., 32, 3724, 10.1016/S0043-1354(98)00144-4
Escobari, 2003, Problemática ambiental en Bolivia, UDAPE – Unidad de análisis de políticas sociales y económicas, 1
Govind, 1997, Biorecovery of metals from acid mine drainage, Emerg. Technol. Hazard, 7, 91
Hao, 2000, Metal effects on sulphur cycle bacteria and metal removal by sulphate-reducing bacteria, 393
He, 2005, Effects of feed solutions on refuse hydrolysis and landfill leachate characteristics, Chemosphere, 59, 837, 10.1016/j.chemosphere.2004.10.061
Huang, 1990, The removal of copper from dilute aqueous solutions by Saccharomyces cerevisae, Water Res., 24, 433, 10.1016/0043-1354(90)90225-U
Krauter, 1996, Renoval of Cr(VI) from ground water by Saccharomyces cerevisae, Biodegradation, 7, 277, 10.1007/BF00115741
Johnson, 1994, Similarity analysis of DNAs, 655
Kabata-Pendias, 2004, Soil–plant transfer of trace elements—an environmental issue, Geoderma, 122, 143, 10.1016/j.geoderma.2004.01.004
Kaksonen, 2003, Optimisation of metal sulphide precipitation in fluidised-bed treatment of acid wastewater, Water Res., 37, 255, 10.1016/S0043-1354(02)00267-1
Kim, 1999, Prevention of acid mine drainage by sulfate reducing bacteria: organic substrate addition to mine waste piles, Environ. Eng. Sci., 16, 139, 10.1089/ees.1999.16.139
Kolmert, 1997, Optimization of sulphide production in an anaerobic continuous biofilm process with sulphate reducing bacteria, Biotechnol. Lett., 19, 971, 10.1023/A:1018435031058
Kolmert, 2000, A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures, J. Microbiol. Methods, 41, 179, 10.1016/S0167-7012(00)00154-8
Macaskie, 1989, Microbial metabolism, desolubilisation and deposition of heavy metals: metal uptake by immobilized cells and application to the detoxification of liquid wastes, Adv. Biotechnol. Process, 12, 159
Machemer, 1992, Adsorption compared with sulfide precipitation as metal removal processes from acid mine drainage in a constructed wetland, J. Contam. Hydrol., 9, 115, 10.1016/0169-7722(92)90054-I
Miller, 1974, A serum bottle modification of the Hungate technique for cultivating obligate anaerobes, Appl. Microbiol., 27, 985, 10.1128/AEM.27.5.985-987.1974
Ozturk, 1993, Degradation of acetate, propionate and butyrate under shock temperature, J. Environ. Eng., 119, 321, 10.1061/(ASCE)0733-9372(1993)119:2(321)
Parawira, 2004, Volatile fatty acids production during anaerobic mesophilic digestion of solid potato waste, J. Chem. Technol. Biotechnol., 79, 673, 10.1002/jctb.1012
Pospiech, 1995, A versatile quick – prep of genomic DNA from gram-positive bacteria, Trends Genet., 11, 217, 10.1016/S0168-9525(00)89052-6
Pott, 2004, Separation of heavy metals from water solutions at the laboratory scale, Biotechnol. Lett., 26, 451, 10.1023/B:BILE.0000018267.09698.cc
Poulson, 1997, Toxicity of heavy metals (Ni, Zn) to Desulfovibrio desulfuricans, Geomicrobiol. J., 14, 41, 10.1080/01490459709378032
Quillaguamán, 2004, Halomonas boliviensis sp. nov., an alkalitolerant, moderate halophile bacterium isolated from soil around a Bolivian hypersaline lake, Int. J. Syst. Evol. Microbiol., 54, 721, 10.1099/ijs.0.02800-0
Rai, 1981, Phycology and heavy metal pollution, Biol. Rev., 56, 99, 10.1111/j.1469-185X.1981.tb00345.x
Rowley, M., Warkentin, D.D., Sicotte, V., 1997. Site demonstration of the biosulphide process at the former Britannia mine. In: Proceedings of the Fourth International Conference on Acid Rock Drainage. Vancouver, British Columbia, Canada, May 31–June 6, 1997. American Society of Surface Mining and Reclamation. 4, 1533–1547.
Van Houten, R., 1996. Biological Sulfate Reduction with Synthesis Gas. PhD-Thesis Agricultural University Wageningen, The Netherlands.
Veglio, 1997, Biosorption of toxic heavy metals: an equilibrium study using free cells of Arthrobacter spp, Process Biochem., 32, 99, 10.1016/S0032-9592(96)00047-7
Visser, A., 1995. The Anaerobic Treatment of Sulfate Containing Wastewater. Ph.D-thesis, Agricultural University, Wageningen, The Netherlands.
White, 1996, A comparison of carbon/energy and complex nitrogen sources for bacterial sulphate-reduction: potential applications to bioprecipitation of toxic metals as sulphides, J. Ind. Microbiol., 17, 116, 10.1007/BF01570054
Widdel, 1991, Gram-negative mesophilic sulfate-reducing bacteria, 3352