Object tracking in motion-blind flies

Nature Neuroscience - Tập 16 Số 6 - Trang 730-738 - 2013
Armin Bahl1, Georg Ammer1, Tabea Schilling1, Alexander Borst1
1Max Planck Institute of Neurobiology, Martinsried, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Götz, K.G. Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2, 77–92 (1964).

Buchner, E. Elementary movement detectors in an insect visual system. Biol. Cybern. 24, 85–101 (1976).

Blondeau, J. & Heisenberg, M. The three-dimensional optomotor torque system of Drosophila melanogaster. Studies on wild type and the mutant optomotor blind H31. J. Comp. Physiol. A 145, 321–329 (1982).

Tammero, L.F. & Dickinson, M.H. The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. J. Exp. Biol. 205, 327–343 (2002).

Mronz, M. & Lehmann, F.-O. The free-flight response of Drosophila to motion of the visual environment. J. Exp. Biol. 211, 2026–2045 (2008).

Reichardt, W. & Wenking, H. Optical detection and fixation of objects by fixed flying flies. Naturwissenschaften 56, 424–425 (1969).

Heisenberg, M. & Wolf, R. Vision in Drosophila: Genetics of Microbehavior (Springer-Verlag, Berlin, 1984).

Reiser, M.B. & Dickinson, M.H. Drosophila fly straight by fixating objects in the face of expanding optic flow. J. Exp. Biol. 213, 1771–1781 (2010).

Rister, J. et al. Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster. Neuron 56, 155–170 (2007).

Götz, K.G. Visual guidance in Drosophila. in Development and Neurobiology of Drosophila (eds. Siddiqi, O., Babu, P., Hall, M.L. & Hall, J.C.) 391–407 (Plenum Press, New York, 1980).

Strauss, R. & Pichler, J. Persistence of orientation toward a temporarily invisible landmark in Drosophila melanogaster. J. Comp. Physiol. A 182, 411–423 (1998).

Maimon, G., Straw, A.D. & Dickinson, M.H. A simple vision-based algorithm for decision making in flying Drosophila. Curr. Biol. 18, 464–470 (2008).

Aptekar, J.W., Shoemaker, P.A. & Frye, M.A. Figure tracking by flies is supported by parallel visual streams. Curr. Biol. 22, 482–487 (2012).

Heisenberg, M., Wonneberger, R. & Wolf, R. Optomotor-blind (H31): a Drosophila mutant of the lobula plate giant neurons. J. Comp. Physiol. A 124, 287–296 (1978).

Geiger, G. & Nässel, D.R. Visual orientation behavior of flies after selective laser beam ablation of interneurones. Nature 293, 398–399 (1981).

Hausen, K. & Wehrhahn, C. Neural circuits mediating visual flight control in flies. II. Separation of two control systems by microsurgical brain lesions. J. Neurosci. 10, 351–360 (1990).

Bausenwein, B., Wolf, R. & Heisenberg, M. Genetic dissection of optomotor behavior in Drosophila melanogaster. Studies on wild-type and the mutant optomotor-blind (H31). J. Neurogenet. 3, 87–109 (1986).

Wolf, R. & Heisenberg, M. Visual orientation in motion-blind flies is an operant behavior. Nature 323, 154–156 (1986).

Meinertzhagen, I.A. & O'Neil, S.D. Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J. Comp. Neurol. 305, 232–263 (1991).

Joesch, M., Plett, J., Borst, A. & Reiff, D.F. Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr. Biol. 18, 368–374 (2008).

Schnell, B. et al. Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. J. Neurophysiol. 103, 1646–1657 (2010).

Joesch, M., Schnell, B., Raghu, S.V., Reiff, D.F. & Borst, A. ON and OFF pathways in Drosophila motion vision. Nature 468, 300–304 (2010).

Eichner, H., Joesch, M., Schnell, B., Reiff, D.F. & Borst, A. Internal structure of the fly elementary motion detector. Neuron 70, 1155–1164 (2011).

Bausenwein, B. & Fischbach, K. Activity labeling patterns in the medulla of Drosophila melanogaster caused by motion stimuli. Cell Tissue Res. 270, 25–35 (1992).

Bausenwein, B., Dittrich, A.P. & Fischbach, K.F. The optic lobe of Drosophila melanogaster. II. Sorting of retinotopic pathways in the medulla. Cell Tissue Res. 267, 17–28 (1992).

Schnell, B., Raghu, S.V., Nern, A. & Borst, A. Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila. J. Comp. Physiol. A 198, 389–395 (2012).

Seelig, J.D. et al. Two-photon calcium imaging from head-fixed Drosophila during optomotor walking behavior. Nat. Methods 7, 535–540 (2010).

Brand, A.H. & Perrimon, N. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401–415 (1993).

Kitamoto, T. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47, 81–92 (2001).

Poggio, T. & Reichardt, W. A theory of the pattern induced flight orientation of the fly Musca domestica. Kybernetik 12, 185–203 (1973).

Wehrhahn, C. Flight torque and lift responses of the housefly (Musca domestica) to a single stripe moving in different parts of the visual field. Biol. Cybern. 29, 237–247 (1978).

Pick, B. Visual flicker induces orientation behavior in the fly Musca. Z. Naturforsch. C 29c, 310–312 (1974).

Wehrhahn, C. Fast and slow flight torque responses in flies and their possible role in visual orientation behavior. Biol. Cybern. 40, 213–221 (1981).

Reichardt, W. Evaluation of optical motion information by movement detectors. J. Comp. Physiol. A 161, 533–547 (1987).

Reichardt, W. & Poggio, T.A. Figure-ground discrimination by relative movement in the visual system of the fly. Part I: Experimental Results. Biol. Cybern. 35, 81–100 (1979).

Egelhaaf, M. On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I. Behavioral constraints imposed on the neuronal network and the role of the optomotor system. Biol. Cybern. 52, 123–140 (1985).

Egelhaaf, M. On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II. Figure-detection cells, a new class of visual interneurones. Biol. Cybern. 52, 195–209 (1985).

Liang, P., Heitwerth, J., Kern, R., Kurtz, R. & Egelhaaf, M. Object representation and distance encoding in three-dimensional environments by a neural circuit in the visual system of the blowfly. J. Neurophysiol. 107, 3446–3457 (2012).

Egelhaaf, M. On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. III. Possible input circuitries and behavioral significance of the FD cells. Biol. Cybern. 52, 267–280 (1985).

Warzecha, A.K., Borst, A. & Egelhaaf, M. Photo-ablation of single neurons in the fly visual system reveals neural circuit for the detection of small moving objects. Neurosci. Lett. 141, 119–122 (1992).

Cuntz, H., Haag, J. & Borst, A. Neural image processing by dendritic networks. Proc. Natl. Acad. Sci. USA 100, 11082–11085 (2003).

Borst, A. Drosophila's view on insect vision. Curr. Biol. 19, R36–R47 (2009).

Pfeiffer, B.D. et al. Tools for neuroanatomy and neurogenetics in Drosophila. Proc. Natl. Acad. Sci. USA 105, 9715–9720 (2008).