Differential Effects of Physiologically Relevant Hypoxic Conditions on T Lymphocyte Development and Effector Functions

Journal of Immunology - Tập 167 Số 11 - Trang 6140-6149 - 2001
Charles C. Caldwell1, Hidefumi Kojima1, Dmitriy Lukashev1, J Armstrong1, Mark O. Farber1, Sergey Apasov1, Michail V. Sitkovsky1
1Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892

Tóm tắt

Abstract

Direct measurements revealed low oxygen tensions (0.5–4.5% oxygen) in murine lymphoid organs in vivo. To test whether adaptation to changes in oxygen tension may have an effect on lymphocyte functions, T cell differentiation and functions at varying oxygen tensions were studied. These studies show: 1) differentiated CTL deliver Fas ligand- and perforin-dependent lethal hit equally well at all redox conditions; 2) CTL development is delayed at 2.5% oxygen as compared with 20% oxygen. Remarkably, development of CTL at 2.5% oxygen is more sustained and the CTL much more lytic; and 3) hypoxic exposure and TCR-mediated activation are additive in enhancing levels of hypoxia response element-containing gene products in lymphocyte supernatants. In contrast, hypoxia inhibited the accumulation of nonhypoxia response element-containing gene products (e.g., IL-2 and IFN-γ) in the same cultures. This suggests that T cell activation in hypoxic conditions in vivo may lead to different patterns of lymphokine secretion and accumulation of cytokines (e.g., vascular endothelial growth factor) affecting endothelial cells and vascular permeabilization. Thus, although higher numbers of cells survive and are activated during 20% oxygen incubation in vitro, the CTL which develop at 2.5% oxygen are more lytic with higher levels of activation markers. It is concluded that the ambient 20% oxygen tension (plus 2-ME) is remarkably well suited for immunologic specificity and cytotoxicity studies, but oxygen dependence should be taken into account during the design and interpretation of results of in vitro T cell development assays and gene expression studies in vivo.

Từ khóa


Tài liệu tham khảo

Picker, L. J., and M. H. Siegelman. 1999. Fundamental Immunology. W. E. Paul, ed. Lippincott-Raven, Philadelphia/New York, p. 479.

Westermann, J., U. Bode. 1999. Distribution of activated T cells migrating through the body: a matter of life and death. Immunol. Today 20: 302

Loeffler, D. A., P. C. Keng, R. B. Baggs, E. M. Lord. 1990. Lymphocytic infiltration and cytotoxicity under hypoxic conditions in the EMT6 mouse mammary tumor. Int. J. Cancer 45: 462

Dewhirst, M. W.. 1998. Concepts of oxygen transport at the microcirculatory level. Semin. Radiat. Oncol. 8: 143

Jelkmann, W.. 1998. Proinflammatory cytokines lowering erythropoietin production. J. Interferon Cytokine Res. 18: 555

Van Belle, H., F. Goossens, J. Wynants. 1987. Formation and release of purine catabolites during hypoperfusion, anoxia, and ischemia. Am. J. Pathol. 252: H886

Matherne, G. P., J. P. Headrick, S. D. Coleman, R. M. Berne. 1990. Interstitial transudate purines in normoxic and hypoxic immature and mature rabbit hearts. Pediatr. Res. 28: 348

Vaupel, P. W., S. Frinak, H. I. Bicher. 1981. Heterogeneous oxygen partial pressure and pH distribution in C3H mouse mammary adenocarcinoma. Cancer Res. 41: 2008

Vaupel, P., F. Kalinowski, P. Okunieff. 1989. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res. 49: 6449

Hoskin, D. W., T. Reynolds, J. Blay. 1994. Adenosine as a possible inhibitor of killer T-cell activation in the microenvironment of solid tumours. Int. J. Cancer 59: 854

Semenza, G. L.. 1998. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr. Opin. Gene Develop. 8: 588

Iyer, N. V., L. E. Kotch, F. Agani, S. W. Leung, E. Laughner, R. H. Wenger, M. Gassmann, J. D. Gearhart, A. M. Lawler, A. Y. Yu, G. L. Semenza. 1998. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1α. Genes Dev. 12: 149

Aslund, F., J. Beckwith. 1999. Bridge over troubled waters: sensing stress by disulfide bond formation. Cell 96: 751

Sohal, R. S., R. Weindruch. 1996. Oxidative stress, caloric restriction, and aging. Science 273: 59

Hildeman, D. A., T. Mitchell, T. K. Teague, P. Henson, B. J. Day, J. Kappler, P. C. Marrack. 1999. Reactive oxygen species regulate activation-induced T cell apoptosis. Immunity 10: 735

Lanzen, J. L., R. D. Braunm, A. L. Ong, M. W. Dewhirst. 1998. Variability in blood flow and pO2 in tumors in response to carbogen breathing. Int. J. Radiat. Oncol. Biol. Phys. 42: 855

Linsenmeier, R. A., C. M. Yancey. 1987. Improved fabrication of double-barreled recessed cathode O2 microelectrodes. J. Appl. Physiol. 63: 2554

Hanabuchi, S., M. Koyanagi, A. Kawasaki, N. Shinohara, A. Matsuzawa, Y. Nishimura, Y. Kobayashi, S. Yonehara, H. Yagita, K. Okumura. 1994. Fas and its ligand in a general mechanism of T-cell-mediated cytotoxicity. Proc. Natl. Acad. Sci. USA 91: 4930

Takayama, H., N. Shinohara, A. Kawasaki, Y. Someya, S. Hanaoka, H. Kojima, H. Yagita, K. H., K. Okumura, Y. Shinkai. 1991. Antigen-specific directional target cell lysis by perforin-negative T lymphocyte clones. Int. Immunol. 3: 1149

Apasov, S. G., M. V. Sitkovsky. 1994. Development and antigen specificity of CD8+ CTL in β2-microglobulin-negative, MHC class I-deficient mice in response to immunization with tumor cells. J. Immunol. 152: 2087

Koshiba, M., D. L. Rosin, N. Hayashi, J. Linden, M. V. Sitkovsky. 1999. Patterns of A2A extracellular adenosine receptor expression in different functional subsets of human peripheral T cells: flow cytometry studies with anti-A2A receptor monoclonal antibodies. Mol. Pharmacol. 55: 614

Apasov, S. G., M. V. Sitkovsky. 1999. The extracellular versus intracellular mechanisms of inhibition of TCR-triggered activation in thymocytes by adenosine under conditions of inhibited adenosine deaminase. Int. Immunol. 11: 179

Chen, L. T., P. K. Chiang. 1981. Intrasplenic pH in normal and phenylhydrazine-induced anemic rats. Am. J. Hematol. 11: 403

Levesque, M. J., A. C. Groom. 1976. pH environment of red cells in spleen. Am. J. Physiol. 231: 1672

Morimoto, Y., M. Mathru, J. F. Martinez-Tica, M. H. Zornow. 2001. Effects of profound anemia on brain tissue oxygen tension, carbon dioxide tension, and pH in rabbits. J. Neurosurg. Anesthesiol. 13: 33

Hoffman, W. E., F. T. Charbel, G. Edelman, K. Hannigan, J. I. Ausman. 1996. Brain tissue oxygen pressure, carbon dioxide pressure and pH during ischemia. Neurol. Res. 18: 54

Vanderkooi, J. M., M. Erecinska, I. A. Silver. 1991. Oxygen in mammalian tissue: methods of measurement and affinities of various reactions. Am. J. Physiol. 260: C1131

Vignaux, F., E. Vivier, B. Malissen, V. Depraeter, S. Nagata, P. Golstein. 1995. TCR/CD3 coupling to Fas-based cytotoxicity. J. Exp. Med. 181: 781

Click, R. E., L. Benck, B. J. Alter. 1972. Enhancement of antibody synthesis in vitro by mercaptoethanol. Cell. Immunol. 3: 156

Katz-Heber, H., A. B. Peck, E. Click. 1973. Immune responses in vitro. II. Mixed leukocyte interaction in a protein-free medium. Eur. J. Immunol. 3: 379

Mosmann, T. R., S. Sad. 1996. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. Today 17: 138

MacDonald, H. R., C. J. Koch. 1977. Energy metabolism and T-cell-mediated cytolysis. I. Synergism between inhibitors of respiration and glycolysis. J. Exp. Med. 146: 698

Nathan, C. F., J. A. Mercer-Smith, N. M. DeSantis, M. A. Palladino. 1982. Role of oxygen in T cell-mediated cytolysis. J. Immunol. 129: 2164

McLaughlin, K. A., B. A. Osborne, R. A. Goldsby. 1996. The role of oxygen in thymocyte apoptosis. Eur. J. Immunol. 26: 1170

Martz, E.. 1993. Overview of CTL-target adhesion and other critical events in the cytotoxic mechanisms. M. Sitkovsky, and P. Henkart, eds. Cytotoxic Cells: Generation, Recognition, Effector Functions, Methods 9 Birkhauser/Springer Verlag, New York.

Melder, R. J., G. C. Koenig, B. P. Witwer, N. Safabakhsh, L. L. Munn, R. K. Jain. 1996. During angiogenesis, vascular endothelial growth factor and basic fibroblast growth factor regulate natural killer cell adhesion to tumor endothelium. Nat. Med. 2: 992

Bodin, P., G. Burnstock. 1996. ATP-stimulated release of ATP by human endothelial cells. J. Cardiovasc. Pharmacol. 27: 872

Petruzzi, E., C. Orlando, P. Pinzani, R. Sestini, A. Del Rosso, G. Dini, E. Tanganelli, A. Buggiani, M. Pazzagli. 1994. Adenosine triphosphate release by osmotic shock and hemoglobin A1C in diabetic subjects’ erythrocytes. Metabolism 43: 435

Hamann, M., D. Attwell. 1996. Non-synaptic release of ATP by electrical stimulation in slices of rat hippocampus, cerebellum and habenula. Eur. J. Neurosci. 8: 1510

Huang, S., M. Koshiba, S. Apasov, M. Sitkovsky. 1997. Role of A2a adenosine receptor-mediated signaling in inhibition of T cell activation and expansion. Blood 90: 1600

Blancher, C., A. L. Harris. 1998. The molecular basis of the hypoxia response pathway: tumour hypoxia as a therapy target. Cancer Metastasis Rev. 17: 187

Jiang, B.-H., G. L. Semenza, C. Bauer, H. H. Marti. 1996. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am. J. Physiol. 271: C1172

Salceda, S., J. Caro. 1997. Hypoxia-inducible factor 1α (HIF-1α) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions: its stabilization by hypoxia depends on redox-induced changes. J. Biol. Chem. 272: 22642

Kallio, P. J., I. Pongratz, K. Gradin, J. McGuire, L. Poellinger. 1997. Activation of hypoxia-inducible factor 1α: posttranscriptional regulation and conformational change by recruitment of the Arnt transcription factor. Proc. Natl. Acad. Sci. USA 94: 5667

Brand, K. A., U. Hermfisse. 1997. Aerobic glycolysis by proliferating cells: a protective strategy against reactive oxygen species. FASEB J. 11: 388

Mishell, R. I., R. W. Dutton. 1967. Immunization of dissociated spleen cell cultures from normal mice. J. Exp. Med. 126: 423

Heber-Katz, E., R. E. Click. 1972. Immune responses in vitro. V. Role of mercaptoethanol in the mixed-leukocyte reaction. Cell. Immunol. 5: 410

Marrack, P., T. Mitchell, D. Hildeman, R. Kedl, T. K. Teague, J. Bender, W. Rees, B. C. Schaefer, J. Kappler. 2000. Genomic-scale analysis of gene expression in resting and activated T cells. Curr. Opin. Immunol. 12: 206

Murali-Krishna, K., J. D. Altman, M. Suresh, D. J. Sourdive, A. J. Zajac, J. D. Miller, J. Slansky, R. Ahmed. 1998. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8: 177

McMichael, A. J., C. A. O’Callaghan. 1998. A new look at T cells. J. Exp. Med. 187: 1367

Krieger, J. A., J. C. Landsiedel, D. A. Lawrence. 1996. Differential in vitro effects of physiological and atmospheric oxygen tension on normal human peripheral blood mononuclear cell proliferation, cytokine and immunoglobulin production. Int. J. Immunopharmacol. 18: 545

Ivanovi, Z., B. Bartolozzi, A. Bernabei, M. Cipolleschil, E. Rovida, P. Milenkovi, V. Praloran, P. D. Sbarba. 2000. Incubation of murine bone marrow cells in hypoxia ensures the maintenance of marrow-repopulating ability together with the expansion of committed progenitors. Br. J. Haematol. 108: 424