Exploration of sensing of nitrogen dioxide and ozone molecules using novel TiO2/Stanene heterostructures employing DFT calculations
Tài liệu tham khảo
Qiao, 2014, High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus, Nat. Commun., 5, 4475, 10.1038/ncomms5475
Balendhran, 2015, Elemental analogues of graphene: silicene, germanene, stanene, and phosphorene, Small, 11, 640, 10.1002/smll.201402041
Liu, 2014, Phosphorene: an unexplored 2D semiconductor with a high hole mobility, ACS Nano, 8, 4033, 10.1021/nn501226z
Zhu, 2014, Semiconducting layered blue phosphorus: a computational study, Phys. Rev. Lett., 112, 176802, 10.1103/PhysRevLett.112.176802
Singh, 2015, Computational screening of 2D materials for photocatalysis, J. Phys. Chem. Lett., 6, 1087, 10.1021/jz502646d
Cao, 2015, Polymeric photocatalysts based on graphitic carbon nitride, Adv., Mater., 27, 2150, 10.1002/adma.201500033
Pumera, 2011, Graphene-based nanomaterials for energy storage, Energy Environ. Sci., 4, 668, 10.1039/C0EE00295J
Cai, 2014, Layer-dependent band alignment and work function of few-layer phosphorene, Sci. Rep., 4, 6677, 10.1038/srep06677
Yang, 2013, Liquid-mediated dense integration of graphene materials for compact capacitive energy storage, Science, 341, 534, 10.1126/science.1239089
Fiori, 2014, Electronics based on two-dimensional materials, Nat. Nanotechnol., 9, 768, 10.1038/nnano.2014.207
Liu, 2015, Semiconducting black phosphorus: synthesis, transport properties and electronic applications, Chem. Soc. Rev., 44, 2732, 10.1039/C4CS00257A
Chen, 2016, Effect of multilayer structure, stacking order and external electric field on electrical properties of few-layer boron-phosphide, Phys. Chem. Chem. Phys.
Chen, 2016, Electronic structure and optical properties of graphene/stanene heterobilayer, Phys. Chem. Chem. Phys.
Bianco, 2013, ACS Nano, 74414
Wang, 2014, Two-dimensional time-reversal-invariant topological superconductivity in a doped quantum spin-Hall insulator, Phys. Rev. B, 90, 054503, 10.1103/PhysRevB.90.054503
Xu, 2015, Large-gap quantum spin Hall states in decorated stanene grown on a substrate, Phys. Rev. B, 92, 081112, 10.1103/PhysRevB.92.081112
Wu, 2016, Structural and electronic properties of two-dimensional stanene and graphene heterostructure, Nanoscale Res. Lett., 11, 525, 10.1186/s11671-016-1731-z
Zhu, 2015, Epitaxial growth of two-dimensional stanene, Nat. Mater., 14, 1020, 10.1038/nmat4384
Castro Neto, 2009, K, Rev. Mod. Phys., 81109
Rachel, 2014, Giant magnetoresistance and perfect spin filter in silicene, germanene, and stanene, Phys. Rev. B, 89, 195303, 10.1103/PhysRevB.89.195303
Wang, 2015, The effect of substrate and external strain on electronic structures of stanene film, Phys. Chem. Chem. Phys., 17, 26979, 10.1039/C5CP04322K
Fujishima, 1972, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37, 10.1038/238037a0
Fernandez-Garcia, 2004, Nanostructured oxides in chemistry: characterization and properties, J. Chem. Rev., 104, 4063, 10.1021/cr030032f
Linsebigler, 1995, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results, J. Chem. Rev., 95, 735, 10.1021/cr00035a013
Maeda, 2006, Photocatalyst releasing hydrogen from water, Nature., 440, 295, 10.1038/440295a
Fujihira, 1981, Heterogeneous photocatalytic oxidation of aromatic compounds on TiO2, Nature, 293, 206, 10.1038/293206a0
Banfied, 1992, Conversion of perovskite to anatase and TiO2 (B) – a TEM study and the use of fundamental building-blocks for understanding relationships among the TiO2 minerals, J. Am. Mineral., 77, 545
Shao, 2008, J. Phys. Chem. C, 112, 18677, 10.1021/jp8043797
Anpo, 2003, J. Catal., 216, 505, 10.1016/S0021-9517(02)00104-5
Errico, 2005, Phys. Rev. B, 72, 184425, 10.1103/PhysRevB.72.184425
Sakthivel, 2004, J. Phys. Chem. B, 108, 19384, 10.1021/jp046857q
Diwald, 2004, J. Phys. Chem. B, 108, 6004, 10.1021/jp031267y
Miyauchi, 2004, Phys. Chem. Chem. Phys., 6, 865, 10.1039/b314692h
Irie, 2003, Chem. Commun. (Cambridge, UK), 11, 1298, 10.1039/b302975a
Baruah, 2009, Nanotechnology applications in pollution sensing and degradation in agriculture: a review, Environ. Chem. Lett., 7, 191, 10.1007/s10311-009-0228-8
Wilson, 2013, Diverse applications of electronic-nose technologies in agriculture and forestry, Sensors, 13, 2295, 10.3390/s130202295
Kim, 2013, Advances and new directions in gas-sensing devices, Acta Mater., 61, 974, 10.1016/j.actamat.2012.10.041
Catto, 2016, Local structure and surface properties of CoxZn1–xO thin films for ozone gas sensing, ACS Appl. Mater. Interfaces, 8, 26066, 10.1021/acsami.6b08589
Stern, 1984
Lox, 1997, 1559
Li, 2014, Ni-doped TiO2 nanotubes for wide-range hydrogen sensing, Nanoscal. Res. Lett., 9, 1
Zou, 2013, Rational design of sub-parts per million specific gas sensors array based on metal nanoparticles decorated nanowire enhancement-mode transistors, Nano Lett., 13, 3287, 10.1021/nl401498t
Chen, 2015, High-energy faceted SnO2-coated TiO2 nan-belt heterostructure for near-ambient temperature-responsive ethanol sensor, ACS Appl. Mater. Interfaces, 7, 24950, 10.1021/acsami.5b08630
Park, 2014, Enhanced ethanol sensing properties of TiO2/ZnO core-shell nanorod sensors, Appl. Phys. A, 115, 1223, 10.1007/s00339-013-7964-0
Lou, 2013, A class of hierarchical nanostructures: ZnO surface functionalized TiO2 with enhanced sensing properties, RSC Adv., 3, 3131, 10.1039/c2ra22655c
Zhu, 2012, Fe2O3/TiO2 tube-like nanostructures: synthesis, structural transformation and the enhanced sensing properties, ACS Appl. Mater. Interfaces, 4, 665, 10.1021/am201689x
Abbasi, 2016, Modified N-doped TiO2 anatase nanoparticle as an ideal O3 gas sensor: insights from density functional theory calculations, Comp. Theor. Chem., 1095, 15, 10.1016/j.comptc.2016.09.011
Abbasi, 2016, N-doped TiO2 anatase nanoparticles as a highly sensitive gas sensor for NO2 detection: insights from DFT computations, Environ. Sci. Nano, 3, 1153, 10.1039/C6EN00159A
Abbasi, 2017, A novel strategy for SOx removal by N-doped TiO2/WSe2 nanocomposite as a highly efficient molecule sensor investigated by van der Waals corrected DFT, Comput. Theo. Chem., 1114, 8, 10.1016/j.comptc.2017.05.020
Abbasi, 2017, Prediction of a highly sensitive molecule sensor for SOx detection based on TiO2/MoS2 nanocomposites: a DFT study, J. Sulfur Chem., 38, 52, 10.1080/17415993.2016.1229782
Abbasi, 2017, An innovative gas sensor system designed from a sensitive nanostructured ZnO for the selective detection of SOx molecules: a density functional theory study, New J. Chem., 41, 12569, 10.1039/C7NJ02140B
Abbasi, 2016, Theoretical study of the adsorption of NOx on TiO2/MoS2 nanocomposites: a comparison between undoped and N-doped nanocomposites, J. Nanostruct. Chem., 6, 309, 10.1007/s40097-016-0204-3
Abbasi, 2018, Investigation of the adsorption of ozone molecules on TiO2/WSe2 nanocomposites by DFT computations: applications to gas sensor devices, Appl. Surf. Sci., 436, 27, 10.1016/j.apsusc.2017.12.010
Abbasi, 2018, Adsorption of toxic SOx molecules on heterostructured TiO2/ZnO nanocomposites for gas sensing applications: a DFT study, Adsorption, 24, 29, 10.1007/s10450-017-9926-x
Abbasi, 2018, Theoretical study of the structural and electronic properties of novel stanene-based buckled nanotubes and their adsorption behaviors, Appl. Surf. Sci., 435, 733, 10.1016/j.apsusc.2017.11.155
Abbasi, 2017, Molecular design of O3 and NO2 sensor devices based on a novel heterostructured N-doped TiO2/ZnO nanocomposite: a van der Waals corrected DFT study, J. Nanostruct. Chem., 7, 345, 10.1007/s40097-017-0244-3
Chen, 2016, Ab initio study of the adsorption of small molecules on stanene, J. Phys. Chem. C, 120, 13987, 10.1021/acs.jpcc.6b04481
Zhang, 2010, Functional hybrid materials based on carbon nanotubes and metal oxides, J. Mater. Chem., 20, 6383, 10.1039/b926341a
Hohenberg, 1964, Inhomogeneous electron gas, Phys. Rev., 136, B864, 10.1103/PhysRev.136.B864
Kohn, 1965, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, A1133, 10.1103/PhysRev.140.A1133
The code, OPENMX, pseudoatomic basis functions, and pseudopotentials are available on a web site http://www.openmxsquare.org.
Ozaki, 2004, Numerical atomic basis orbitals from H to Kr, Phys. Rev. B., 69, 195113, 10.1103/PhysRevB.69.195113
Ozaki, 2005, Variationally optimized basis orbitals for biological molecules, Phys. Rev. B., 72, 045121, 10.1103/PhysRevB.72.045121
Perdew, 1997, Generalized gradient approximation made simple, Phys. Rev. Lett., 78, 1396, 10.1103/PhysRevLett.78.1396
Grimme, 2006, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem., 27, 1787, 10.1002/jcc.20495
Momma, 2011, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr., 44, 1272, 10.1107/S0021889811038970
Modarresi, 2015, Effect of external strain on electronic structure of stanene, Comp. Mater. Sci., 101, 164, 10.1016/j.commatsci.2015.01.039
The data available at <http://rruff.geo.arizona.edu/AMS/amcsd.php>.
Wyckoff, 1963
Lei, 2010, First principles study of the size effect of TiO2 anatase nanoparticles in dye-sensitized solar cell, Modelling Simul. Mater. Sci. Eng., 18, 10.1088/0965-0393/18/2/025004
Liu, 2012, First principles study of the adsorption of a NO molecule on N-doped anatase nanoparticles, J. Appl. Surf. Sci, 258, 8312, 10.1016/j.apsusc.2012.05.053
Longa, 2006, Correlation of electronic structures and crystal structures with photocatalytic properties of undoped, N-doped and I-doped, TiO2, Chem. Phys. Lett., 420, 71, 10.1016/j.cplett.2005.12.036
Gao, 2009, Photocatalytic activity and electronic structure analysis of N-doped anatase TiO2: a combined experimental and theoretical study, Chem. Eng. Technol., 32, 867, 10.1002/ceat.200800624