ALVEC: Auto-scaling by Lotka Volterra elastic cloud: A QoS aware non linear dynamical allocation model
Tài liệu tham khảo
Population Dynamics, http://www.conservationnw.org/what-we-do/predators-and-prey/carnivores-predators-and-their-prey, last accessed on 10/05/2017.
Wolfram, http://mathworld.wolfram.com/Lotka-VolterraEquations.html, last accessed on 14/09/2016.
Goswami, 2013, Resource allocation in abstraction using predator-prey dynamics: a qualitative analysis, Int. J. Comput. Appl., 61, 6
Saha, 2011
Subashini, 2011, A survey on security issues in service delivery models of cloud computing, J. Netw. Comput. Appl., 34, 1, 10.1016/j.jnca.2010.07.006
Sarasvathi, 2015, QoS guaranteed intelligent routing using hybrid PSO-GA in wireless mesh networks, Cybern. Inf. Technol., 15, 69
J. Sarkar, B. Goswami, S. Saha, S. Kar, CD-SFA: stochastic frontier analysis approach to revenue modeling in large cloud data centers, 2016, arXiv:1610.00624.
Lim, 2010, Automated control for elastic storage
Armbrust, 2009, SCADS: scale-independent storage for social computing applications
Chieu, 2009, Dynamic scaling of web applications in a virtualized cloud computing environment
Tesauro, 2006, A hybrid reinforcement learning approach to autonomic resource allocation
Hasan, 2012, Integrated and autonomic cloud resource scaling
Iqbal, 2011, Adaptive resource provisioning for read intensive multi-tier applications in the cloud, Futur. Gener. Comput. Syst., 27, 871, 10.1016/j.future.2010.10.016
Roy, 2011, Efficient auto scaling in the cloud using predictive models for workload forecasting, 500
Fito, 2010, SLA-driven elastic cloud hosting provider
Saha, 2016, A novel revenue optimization model to address the operation and maintenance cost of a data center, J. Cloud Comput., 5, 1, 10.1186/s13677-015-0050-8
Public link of simulated dataset obtained from the experiments on CloudSim, https://drive.google.com/drive/folders/0B9K3zpr0Pox8TF9ZelFSRlp4UlE?usp=sharing;Last updated on 19/08/2017.
Aslanpour, 2016, SLA-aware resource allocation for application service providers in the cloud
Chiang, 2009
Herbst, 2013, Elasticity in cloud computing what it is, and what it is not
Beloglazov, 2010, Adaptive threshold-based approach for energy-efficient consolidation of virtual machines in cloud data centers, 4
Beloglazov, 2012, Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing, Futur. Gener. Comput. Syst., 28, 755, 10.1016/j.future.2011.04.017
Lorido-Botran, 2014, Autoscaling techniques for elastic applications in cloud environments, J. Grid Comput., 12, 559, 10.1007/s10723-014-9314-7
Jamshidi, 2014, Autonomic resource provisioning for cloud-based software, 95-104
Xu, 2007, On the use of fuzzy modeling in virtualized data center management
Gambi, 2013, Assurance of self-adaptive controllers for the cloud, Assur. Self-Adapt. Syst., 7740, 311, 10.1007/978-3-642-36249-1_12
Ali-Eldin, 2012, An adaptive hybrid elasticity controller for cloud infrastructures
Urgaonkar, 2008, Agile dynamic provisioning of multi-tier internet applications, ACM Trans. Auton. Adapt. Syst., 3, 1, 10.1145/1342171.1342172
Li, 2011, Cloud task scheduling based on load balancing ant colony optimization, 39
Varalakshmi, 2011
Zhang, 2008, A task scheduling algorithm based on PSO for grid computing, Int. J. Comput. Intell.Res., 4, 37, 10.5019/j.ijcir.2008.123
Takeuchi, 2006, Evolution of predator prey systems described by a Lotka Volterra equation under random environment, J. Math Anal. Appl., 323, 938, 10.1016/j.jmaa.2005.11.009
Tang, 2002, The periodic predator prey Lotka Volterra model with impulsive effect, J. Mech. Med. Biol., 2, 267, 10.1142/S021951940200040X
Liu, 2003, Complex dynamics of Holling type II Lotka Volterra predator prey system with impulsive perturbations on the predator, Chaos Solitons Fract., 16, 311, 10.1016/S0960-0779(02)00408-3
Kolmogorov, 1936, Sulla teoria di volterra per la lotta per lâĂŹesistenza, Giornale Ist. Ital., Attuari, 7, 74
Keller, 2011, Stochastic delay Lotka-Volterra system to interacting population dynamics
Goel, 1971
Chaisiri, 2012, Optimization of resource provisioning cost in cloud computing, IEEE Trans. Serv. Comput., 5, 164, 10.1109/TSC.2011.7
Luck, 2003
Kang, 2004, Modeling mobile agent applications in UML 2.0 activity diagrams, 519
Xiangzhen, 2011, Efficient dynamic task scheduling in virtualized data centers with fuzzy prediction, J. Netw. Comput. Appl., 34, 1068, 10.1016/j.jnca.2010.06.001
Arabnejad, 2017, A comparison of reinforcement learning techniques for fuzzy cloud auto-scaling, 64
ALVEC Code (CloudSim), https://github.com/jyotirmoy208/LV, last updated on 26/09/2017.
Achar, 2012, Optimal scheduling of computational task in cloud using virtual machine tree
Vijayalakshmi, 2013, A novel approach for task scheduling in cloud
GitHub, https://github.com/jyotirmoy208/LV/blob/master/preydcreasing.xlsx, accessed on 10/5/2018.
GitHubCodes, https://github.com/jyotirmoy208/LV/blob/master/preyincreasing.xlsx, accessed on 10/5/2018.
Buyya, 2018, Sustainable cloud computing: foundations and future directions, Bus. Technol. Digit. Transf.Strat. Cut. Consortium, 21
Calheiros, 2011, CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms, Software—Pract. Exper., 41, 23, 10.1002/spe.995
Liang, 2013, Simulation of power consumption of cloud data centers, Simul. Model. Pract. Theory, 39, 152, 10.1016/j.simpat.2013.08.004