Eocene hyperthermal events drove episodes of vegetation turnover in the Fushun Basin, northeast China: Evidence from a palaeoclimate analysis of palynological assemblages

Palaeogeography, Palaeoclimatology, Palaeoecology - Tập 610 - Trang 111317 - 2023
Yuanji Li1,2,3, Pingchang Sun3,4, Howard J. Falcon-Lang5, Zhaojun Liu3,4, Baoyong Zhang1,2, Qiang Zhang1,2, Junxian Wang6, Yinbo Xu7
1Department of Safety Engineering, Heilongjiang University of Science and Technology, Harbin 150022, China
2National Professional Center Lab of Safety Basic Research for Hydrocarbon Gas Pipeline Transportation Network, Harbin 150022, China
3College of Earth Sciences, Jilin University, Changchun, Jilin 130061, China
4Key-Lab for Oil Shale and Paragenetic Minerals of Jilin Province, Changchun, Jilin 130061, China
5Department of Earth Sciences, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK
6Beijing Research Institute of Uranium Geology, Beijing 100029, China
7Oil and Gas Survey, China Geological Survey, Beijing 100083, China

Tài liệu tham khảo

Bohaty, 2009, Coupled greenhouse warming and deep-sea acidification in the middle Eocene, Paleoceanography, 24, 10.1029/2008PA001676 Bowen, 2014, Two massive, rapid releases of carbon during the onset of the Palaeocene-Eocene thermal maximum, Nat. Geosci., 8, 44, 10.1038/ngeo2316 Chen, 2017, Paleoweathering and paleoenvironmental change recorded in lacustrine sediments of the early to middle Eocene in Fushun Basin, Northeast China. Geochemistry, Geophys. Geosystems, 18, 41, 10.1002/2016GC006573 Committee, 1995, Vegetation in China, 411 1974 Chumakov, 1995, Climatic belts of the mid-Cretaceous time, Stratigr. Geol. Correl., 3, 241 Collinson, 2009, Palynological evidence of vegetation dynamics in response to palaeoenvironmental change across the onset of the Paleocene-Eocene thermal Maximum at Cobham,Southern England, Grana, 48, 38, 10.1080/00173130802707980 Cramer, 2003, Orbital climate forcing of δ13C excursions in the late Paleocene-early Eocene (chrons C24n–C25n), Paleoceanography, 18, 1, 10.1029/2003PA000909 Crouch, 2003, The Apectodinium acme and terrestrial discharge during the Paleocene-Eocene thermal maximum: new palynological, geochemical and calcareous nannoplankton observations at Tawanui, New Zealand, Palaeogeogr. Palaeoclimatol. Palaeoecol., 194, 387, 10.1016/S0031-0182(03)00334-1 Derner, 2005, Seedling growth of two honey mesquite varieties under CO2 enrichment, Rangel. Ecol. Manag., 58, 292, 10.2111/1551-5028(2005)58[292:SGOTHM]2.0.CO;2 Dunkley Jones, 2013, Climate model and proxy data constraints on ocean warming across the Paleocene-Eocene thermal Maximum, Earth Sci. Rev., 125, 123, 10.1016/j.earscirev.2013.07.004 Frieling, 2017, Extreme warmth and heat-stressed plankton in the tropics during the Paleocene-Eocene thermal Maximum, Sci. Adv., 3, 10.1126/sciadv.1600891 Frontalini, 2016, 524, 161 Galeotti, 2010, Orbital chronology of early Eocene hyperthermals from the Contessa Road section, Central Italy, Earth Planet. Sci. Lett., 290, 192, 10.1016/j.epsl.2009.12.021 Grimm, 1987, CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares, Comput. Geosci., 13, 13, 10.1016/0098-3004(87)90022-7 Grimm, 2012, Reliability and resolution of the coexistence approach– a revalidation using modern–day data, Rev. Palaeobot. Palynol., 172, 33, 10.1016/j.revpalbo.2012.01.006 Haynes, 2020, Aggregation and organic matter storage in meso-thermal, humid soils, 213 Heimhofer, 2003, Terrestrial carbon-isotope records from coastal deposits (Algarve, Portugal): a tool for chemostratigraphic correlation on an intrabasinal and global scale, Terra Nov., 15, 8, 10.1046/j.1365-3121.2003.00447.x Held, 2006, Robust Responses of the Hydrological Cycle to Global Warming, J. Clim., 19, 5686, 10.1175/JCLI3990.1 Herman, 2014, Late cretaceous Arman’ flora of Magadan oblast: Paleoclimatic interpretation, Stratigr. Geol. Correl., 22, 298, 10.1134/S0869593814030058 Herman, 2017, Eocene–early Oligocene climate and vegetation change in southern China: evidence from the Maoming Basin, Palaeogeogr. Palaeoclimatol. Palaeoecol., 479, 126, 10.1016/j.palaeo.2017.04.023 Herzschuh, 2004, Holocene vegetation and climate of the Alashan Plateau, NW China, reconstructed from pollen data, Palaeogeogr. Palaeoclimatol. Palaeoecol., 211, 1, 10.1016/j.palaeo.2004.04.001 Hong, 1980, Study on the Strata and Paleontology of Fushun Coalfield, 98 Huber, 2011, The early Eocene equable climate problem revisited, Clim. Past, 7, 603, 10.5194/cp-7-603-2011 Huurdeman, 2021, Rapid expansion of meso-megathermal rain forests into the southern high latitudes at the onset of the Paleocene-Eocene thermal Maximum, Geology, 49, 40, 10.1130/G47343.1 Ivany, 2018, Little lasting impact of the Paleocene-Eocene thermal Maximum on shallow marine molluscan faunas, Sci.Adv., 4, aat5528, 10.1126/sciadv.aat5528 Jaramillo, 2010, Effects of rapid global warming at the Paleocene-Eocene boundary on neotropical vegetation, Science, 330, 957, 10.1126/science.1193833 Kennett, 1991, Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene, Nature, 353, 412, 10.1038/353225a0 Kennett, 1976, Oxygen isotopic evidence for the development of the psychrosphere 38 Ma ago, Science, 260, 513 Lourens, 2005, Astronomical pacing of late Palaeocene to early Eocene global warming events, Nature, 435, 1083, 10.1038/nature03814 Lauretano, 2016, Astronomically tuned age model for the early Eocene carbon isotope events: a new high-resolution δ13C benthic record of ODP Site 1263 between ∼ 49 and ∼ 54 Ma, Newslett. Stratigr., 49, 383, 10.1127/nos/2016/0077 Lauretano, 2015, Frequency, magnitude and character of hyperthermal events at the onset of the early Eocene Climatic Optimum, Clim. Past, 11, 1313, 10.5194/cp-11-1313-2015 Li, 2020, Sea level, biotic and carbon-isotope response to the Paleocene-Eocene thermal maximum in Tibetan Himalayan platform carbonates, Glob. Planet. Change, 194, 10.1016/j.gloplacha.2020.103316 Li, 2022, Eocene hyperthermal events in the terrestrial system: Geochronological and astrochronological constraints in the Fushun Basin,NE China, Mar. Pet. Geol, 139, 10.1016/j.marpetgeo.2022.105604 Li, 2022, Quantitative reconstruction of atmospheric pCO2 sources during Eocene hyperthermal events based on data from the Fushun Basin, Northeast China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 601, 10.1016/j.palaeo.2022.111099 Li, 2021, Factors controlling the distribution of oil shale layers in the Eocene Fushun Basin, NE China, Mar. Pet. Geol., 134, 10.1016/j.marpetgeo.2021.105350 Li, 2020, Geochemistry of the Permian Oil Shale in the Northern Bogda Mountain, Junggar Basin, Northwest China: implications for weathering, Provenance, and Tectonic setting, ACS Earth Sp. Chem., 4 Li, 2019, Lake level controls on oil shale distribution in the Lucaogou Formation, Wujiawan area, Junggar Basin, Northwest China, Energy Fuels Liu, 2015, Geochemistry of the Eocene Jijuntun Formation oil shale in the Fushun Basin, Northeast China: Implications for source-area weathering, provenance and tectonic setting, Chem. Erde, 75, 105, 10.1016/j.chemer.2014.08.004 Lourens, 2005, Astronomical pacing of late Palaeocene to early Eocene global warming events, Nature, 435, 1083, 10.1038/nature03814 Lunt, 2012, A model-data comparison for a multi-model ensemble of early Eocene atmosphere-ocean simulations, EoMIP. Clim. Past, 8, 1717, 10.5194/cp-8-1717-2012 McInerney, 2011, The Paleocene-Eocene thermal maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future, Annu. Rev. Earth Planet. Sci., 39, 489, 10.1146/annurev-earth-040610-133431 Meng, 2012, Palaeoclimatic evolution during Eocene and its influence on oil shale mineralisation, Fushun Basin,China, J. Asian Earth Sci., 45, 95, 10.1016/j.jseaes.2011.09.021 Mosbrugger, 1997, The Coexistence Approach - a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils, Palaeogeogr. Palaeoclimatol. Palaeoecol., 134, 61, 10.1016/S0031-0182(96)00154-X Prasad, 2018, Low-latitude vegetation and climate dynamics at the Paleocene-Eocene transition – a study based on multiple proxies from the Jathang section in northeastern India, Palaeogeogr. Palaeoclimatol. Palaeoecol., 497, 139, 10.1016/j.palaeo.2018.02.013 Slater, 2019, Substantial vegetation response to early Jurassic global warming with impacts on oceanic anoxia, Nat. Geosci., 12, 462, 10.1038/s41561-019-0349-z Smith, 2007, Magnitude of the carbon isotope excursion at the Paleocene-Eocene thermal maximum: the role of plant community change, Earth Planet. Sci. Lett., 262, 50, 10.1016/j.epsl.2007.07.021 Song, 1999, Chinese Sporopollen Fossils (Volume I) - Late Cretaceous and Tertiary Sporopollen, PP1-910. Strobl, 2014, Depositional environment of oil shale within the Eocene Jijuntun Formation in the Fushun Basin (NE China), Mar. Pet. Geol., 56, 166, 10.1016/j.marpetgeo.2014.04.011 Thomas, 2000, Was the late Paleocene thermal maximum a unique event?, GFF, 122, 169, 10.1080/11035890001221169 Turner, 2018, Constraints on the onset duration of the Paleocene-Eocene thermal Maximum, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 376 Utescher, 2011, Cenozoic climate gradients in Eurasia - a palaeo-perspective on future climate change?, Palaeogeogr. Palaeoclimatol. Palaeoecol., 304, 351, 10.1016/j.palaeo.2010.09.031 Utescher, 2007, Eocene vegetation patterns reconstructed from plant diversity - a global perspective, Palaeogeogr. Palaeoclimatol. Palaeoecol., 247, 243, 10.1016/j.palaeo.2006.10.022 Vahlenkamp, 2020, A lower to middle Eocene astrochronology for the Mentelle Basin (Australia) and its implications for the geologic time scale, Earth Planet. Sci. Lett., 529, 10.1016/j.epsl.2019.115865 Wang, 2022, Prediction of organic carbon content in oil shale based on logging: a case study in the Songliao Basin, Northeast China, Geomech. Geophys. Geo-Energy Geo-Resources, 8 Wang, 2022, Eocene paleoclimate evolution under the background of Warmhouse-Hothouse conditions in the continental Fushun Basin: implications from magnetic susceptibility and color reflectance, ACS Omega Westerhold, 2020, An astronomically dated record of Earth’s climate and its predictability over the last 66 million years, Science, 369, 1383, 10.1126/science.aba6853 Willard, 2019, Arctic vegetation, temperature, and hydrology during early Eocene transient global warming events, Glob. Planet. Change, 178, 139, 10.1016/j.gloplacha.2019.04.012 Wing, 2005, Paleontology: transient floral change and rapid global warming at the Paleocene-Eocene boundary, Science, 310, 993, 10.1126/science.1116913 Wing, 2010, Resilient terrestrial ecosystems at the Paleocene-Eocene Thermal Maximum, Vol. 2010 Wu, 2003, The areal type system of seed plant families in the world, Plant Divers., 25, 245 Wu, 1980 Xie, 2022, Abrupt collapse of a swamp ecosystem in Northeast China during the Paleocene-Eocene thermal Maximum, Palaeogeogr. Palaeoclimatol. Palaeoecol., 595, 10.1016/j.palaeo.2022.110975 Xie, 2022, A transient south subtropical forest ecosystem in Central China driven by rapid global warming during the Paleocene-Eocene thermal Maximum, Gondwana Res., 101, 192, 10.1016/j.gr.2021.08.005 Xu, 2020, Major and trace elements in mid-Eocene lacustrine oil shales of the Fushun Basin, NE China: concentration features and paleolimnological implications, Mar. Pet. Geol., 121, 10.1016/j.marpetgeo.2020.104610 Xu, 2016, Characterization of depositional conditions for lacustrine oil shales in the Eocene Jijuntun Formation, Fushun Basin, NE China, Int. J. Coal Geol., 167, 10, 10.1016/j.coal.2016.09.004 Yarincik, 2000, Climatically sensitive eolian and hemipelagic deposition in the Cariaco Basin, Venezuela, over the past 578,000 years: results from Al/Ti and K/Al, Paleoceanography, 15, 210, 10.1029/1999PA900048 Zachos, 2001, Trends, rhythms, and aberrations in global climate 65 Ma to present, Science, 292, 686, 10.1126/science.1059412 Zachos, 2008, An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics, Nature, 451, 279, 10.1038/nature06588 Zachos, 2005, Paleoclimate: rapid acidification of the ocean during the Paleocene-Eocene thermal maximum, Science, 308, 1611, 10.1126/science.1109004 Zhang, 2022, Terrestrial records of early cretaceous paleoclimate fluctuations in the Yin’e Basin, northern China: evidence from sedimentology and palynomorphs in lacustrine sediments, Sediment. Geol., 432, 10.1016/j.sedgeo.2022.106110 Zhang, 2022, Lateral changes of organic matter preservation in the lacustrine Qingshankou Formation (Cretaceous Songliao Basin, NE China): evidence for basin segmentation, Int. J. Coal Geol., 254, 10.1016/j.coal.2022.103984 Zhang, 2009, A Preliminary Summary of Late Cretaceous-Neogene Sporopollen Fossils in Central South China, 1