Pathogenic Virus Detection by Optical Nanobiosensors
Tài liệu tham khảo
Yi, 2020, COVID-19: what has been learned and to be learned about the novel coronavirus disease, Int. J. Biol. Sci., 16, 1753, 10.7150/ijbs.45134
Singhal, 2020, A review of coronavirus disease-2019 (COVID-19), Indian J. Pediatr., 87, 281, 10.1007/s12098-020-03263-6
de la Rica, 2012, Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye, Nat. Nanotechnol., 7, 821, 10.1038/nnano.2012.186
Santiago, 2018, Performance of the Trioplex real-time RT-PCR assay for detection of Zika, dengue, and chikungunya viruses, Nat. Commun., 9, 1391, 10.1038/s41467-018-03772-1
Leland, 2007, Role of cell culture for virus detection in the age of technology, Clin. Microbiol. Rev., 20, 49, 10.1128/CMR.00002-06
Watzinger, 2006, Detection and monitoring of virus infections by real-time PCR, Mol. Aspects Med., 27, 254, 10.1016/j.mam.2005.12.001
Killian, 2008, Hemagglutination assay for the avian influenza virus, 47
Lequin, 2005, Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA), Clin. Chem., 51, 2415, 10.1373/clinchem.2005.051532
Udugama, 2020, Diagnosing COVID-19: the disease and tools for detection, ACS Nano, 14, 3822, 10.1021/acsnano.0c02624
Ye, 2014, Upconversion luminescence resonance energy transfer (LRET)-based biosensor for rapid and ultrasensitive detection of avian influenza virus H7 subtype, Small, 10, 2390, 10.1002/smll.201303766
Austin, 2014, The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery, Arch. Toxicol., 88, 1391, 10.1007/s00204-014-1245-3
Mokhtarzadeh, 2017, Nanomaterial-based biosensors for detection of pathogenic virus, Trends Analyt. Chem., 97, 445, 10.1016/j.trac.2017.10.005
Saha, 2012, Gold nanoparticles in chemical and biological sensing, Chem. Rev., 112, 2739, 10.1021/cr2001178
Jianrong, 2004, Nanotechnology and biosensors, Biotechnol. Adv., 22, 505, 10.1016/j.biotechadv.2004.03.004
Tsang, 2019, Upconversion luminescence sandwich assay for detection of influenza H7 subtype, Adv. Healthc. Mater., 8, e1900575, 10.1002/adhm.201900575
Payungporn, 2006, Single step multiplex real-time RT-PCR for H5N1 influenza A virus detection, J. Virol. Methods, 131, 143, 10.1016/j.jviromet.2005.08.004
Spackman, 2008, Type A influenza virus detection and quantitation by real-time RT-PCR, 19
Munch, 2001, Detection and subtyping (H5 and H7) of avian type A influenza virus by reverse transcription-PCR and PCR-ELISA, Arch. Virol., 146, 87, 10.1007/s007050170193
Hematian, 2016, Traditional and modern cell culture in virus diagnosis, Osong Public Health Res. Perspect., 7, 77, 10.1016/j.phrp.2015.11.011
Bishop, 1974, Detection of a new virus by electron microscopy of faecal extracts from children with acute gastroenteritis, Lancet, 1, 149, 10.1016/S0140-6736(74)92440-4
Xing, 2020, Post-discharge surveillance and positive virus detection in two medical staff recovered from coronavirus disease 2019 (COVID-19), China, January to February 2020, Euro Surveill., 25, 2000191, 10.2807/1560-7917.ES.2020.25.10.2000191
Gu, 2018, Recent advances on functionalized upconversion nanoparticles for detection of small molecules and ions in biosystems, Adv. Sci., 5, 1700609, 10.1002/advs.201700609
Campion, 1998, Surface-enhanced Raman scattering, Chem. Soc. Rev., 27, 241, 10.1039/a827241z
Bagra, 2019, Plasmon-enhanced fluorescence of carbon nanodots in gold nanoslit cavities, Langmuir, 35, 8903, 10.1021/acs.langmuir.9b00448
Lee, 2015, A plasmon-assisted fluoro-immunoassay using gold nanoparticle-decorated carbon nanotubes for monitoring the influenza virus, Biosens. Bioelectron., 64, 311, 10.1016/j.bios.2014.09.021
Campbell, 2007, SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics, Biomaterials, 28, 2380, 10.1016/j.biomaterials.2007.01.047
Yeom, 2013, Enhancement of the sensitivity of LSPR-based CRP immunosensors by Au nanoparticle antibody conjugation, Sens. Actuators B Chem., 177, 376, 10.1016/j.snb.2012.10.099
Abdelsalam, 2007, SERS at structured palladium and platinum surfaces, J. Am. Chem. Soc., 129, 7399, 10.1021/ja071269m
McNay, 2011, Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications, Appl. Spectrosc., 65, 825, 10.1366/11-06365
Kricka, 2003, Clinical applications of chemiluminescence, Anal. Chim. Acta, 500, 279, 10.1016/S0003-2670(03)00809-2
Wang, 2012, Chemiluminescent immunoassay and its applications, Chin. J. Anal. Chem., 40, 3, 10.1016/S1872-2040(11)60518-5
Su, 2017, Resonance energy transfer in upconversion nanoplatforms for selective biodetection, Acc. Chem. Res., 50, 32, 10.1021/acs.accounts.6b00382
Justino, 2010, Review of analytical figures of merit of sensors and biosensors in clinical applications, Trends Analyt. Chem., 29, 1172, 10.1016/j.trac.2010.07.008
Tan, 2008, Optical protein sensor for detecting cancer markers in saliva, Biosens. Bioelectron., 24, 266, 10.1016/j.bios.2008.03.037
Bellan, 2011, Current trends in nanobiosensor technology, Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 3, 229, 10.1002/wnan.136
Chen, 2010, Quantum-dots-based fluoroimmunoassay for the rapid and sensitive detection of avian influenza virus subtype H5N1, Luminescence, 25, 419, 10.1002/bio.1167
Lee, 2009, Positively charged compact quantum Dot-DNA complexes for detection of nucleic acids, ChemPhysChem, 10, 806, 10.1002/cphc.200800504
Tsang, 2016, Ultrasensitive detection of Ebola virus oligonucleotide based on upconversion nanoprobe/nanoporous membrane system, ACS Nano, 10, 598, 10.1021/acsnano.5b05622
Choi, 2017, Lateral flow assay based on paper–hydrogel hybrid material for sensitive point-of-care detection of Dengue virus, Adv. Healthc. Mater., 6, 1600920, 10.1002/adhm.201600920
Leary, 2006, A chemiluminescent, magnetic particle-based immunoassay for the detection of hepatitis C virus core antigen in human serum or plasma, J. Med. Virol., 78, 1436, 10.1002/jmv.20716
Zhang, 2015, Single-layer transition metal dichalcogenide nanosheet-based nanosensors for rapid, sensitive, and multiplexed detection of DNA, Adv. Mater., 27, 935, 10.1002/adma.201404568
Kairdolf, 2013, Semiconductor quantum dots for bioimaging and biodiagnostic applications, Annu. Rev. Anal. Chem. (Palo Alto, Calif.), 6, 143, 10.1146/annurev-anchem-060908-155136
Zhao, 2010, Quantum-dot-tagged bioresponsive hydrogel suspension array for multiplex label-free DNA detection, Adv. Funct. Mater., 20, 976, 10.1002/adfm.200901812
Algar, 2011, Semiconductor quantum dots in bioanalysis: crossing the valley of death, Anal. Chem., 83, 8826, 10.1021/ac201331r
Li, 2019, Review of carbon and graphene quantum dots for sensing, ACS Sens., 4, 1732, 10.1021/acssensors.9b00514
Zrazhevskiy, 2013, Quantum dot imaging platform for single-cell molecular profiling, Nat. Commun., 4, 1619, 10.1038/ncomms2635
Liu, 2019, Radioiodinated tyrosine based carbon dots with efficient renal clearance for single photon emission computed tomography of tumor, Nano Res., 12, 3037, 10.1007/s12274-019-2549-7
Shao, 2012, Monitoring HSV-TK/ganciclovir cancer suicide gene therapy using CdTe/CdS core/shell quantum dots, Biomaterials, 33, 4336, 10.1016/j.biomaterials.2012.02.058
Yezhelyev, 2007, In situ molecular profiling of breast cancer biomarkers with multicolor quantum dots, Adv. Mater., 19, 3146, 10.1002/adma.200701983
Liang, 2017, Ratiometric fluorescence biosensor based on CdTe quantum and carbon dots for double strand DNA detection, Sens. Actuators B Chem., 244, 585, 10.1016/j.snb.2017.01.032
Wu, 2019, Digital single virus immunoassay for ultrasensitive multiplex avian influenza virus detection based on fluorescent magnetic multifunctional nanospheres, ACS Appl. Mater. Interfaces, 11, 5762, 10.1021/acsami.8b18898
Deng, 2018, Applying strand displacement amplification to quantum dots-based fluorescent lateral flow assay strips for HIV-DNA detection, Biosens. Bioelectron., 105, 211, 10.1016/j.bios.2018.01.039
Tsang, 2015, Stimuli responsive upconversion luminescence nanomaterials and films for various applications, Chem. Soc. Rev., 44, 1585, 10.1039/C4CS00171K
Wang, 2009, Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals, Chem. Soc. Rev., 38, 976, 10.1039/b809132n
Li, 2019, Non-invasive optical guided tumor metastasis/vessel imaging by using lanthanide nanoprobe with enhanced down-shifting emission beyond 1500 nm, ACS Nano, 13, 248, 10.1021/acsnano.8b05431
Lu, 2015, Multifunctional nano-bioprobes based on rattle-structured upconverting luminescent nanoparticles, Angew. Chem. Int. Ed. Engl., 54, 7915, 10.1002/anie.201501468
Zhou, 2012, Upconversion nanophosphors for small-animal imaging, Chem. Soc. Rev., 41, 1323, 10.1039/C1CS15187H
Tsang, 2018, Upconversion nanomaterials for biodetection and multimodal bioimaging using photoluminescence, 249
Anas, 2008, Photosensitized breakage and damage of DNA by CdSe-ZnS quantum dots, J. Phys. Chem. B, 112, 10005, 10.1021/jp8018606
Song, 2012, Aptamer optical biosensor without bio-breakage using upconversion nanoparticles as donors, Chem. Commun. (Camb.), 48, 1156, 10.1039/C2CC16817K
Wong, 2019, Electrochemically assisted flexible lanthanide upconversion luminescence sensing of heavy metal contamination with high sensitivity and selectivity, Nanoscale Adv., 1, 265, 10.1039/C8NA00012C
Li, 2018, Upconversion nanoprobes for biodetections, Coord. Chem. Rev., 354, 155, 10.1016/j.ccr.2017.06.025
Rabouw, 2014, Photonic effects on the Förster resonance energy transfer efficiency, Nat. Commun., 5, 3610, 10.1038/ncomms4610
Bünzli, 2010, Lanthanide luminescence for biomedical analyses and imaging, Chem. Rev., 110, 2729, 10.1021/cr900362e
Eliseeva, 2010, Lanthanide luminescence for functional materials and bio-sciences, Chem. Soc. Rev., 39, 189, 10.1039/B905604C
Zheng, 2015, Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection, Chem. Soc. Rev., 44, 1379, 10.1039/C4CS00178H
Liu, 2020, An upconversion nanoparticle-based photostable FRET system for long-chain DNA sequence detection, Nanotechnology, 31, 235501, 10.1088/1361-6528/ab776d
Yang, 2020, Stochastic DNA dual-walkers for ultrafast colorimetric bacteria detection, Anal. Chem., 92, 4990, 10.1021/acs.analchem.9b05149
Xiao, 2019, Stochastic DNA walkers in droplets for super-multiplexed bacterial phenotype detection, Angew. Chem. Int. Ed. Engl., 58, 15448, 10.1002/anie.201906438
Song, 2018, Porous hollow palladium nanoplatform for imaging-guided trimodal chemo-, photothermal-, and radiotherapy, Nano Res., 11, 2796, 10.1007/s12274-017-1910-y
Boisselier, 2009, Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity, Chem. Soc. Rev., 38, 1759, 10.1039/b806051g
Qiu, 2020, Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection, ACS Nano, 14, 5268, 10.1021/acsnano.0c02439
Takemura, 2017, Versatility of a localized surface plasmon resonance-based gold nanoparticle-alloyed quantum dot nanobiosensor for immunofluorescence detection of viruses, Biosens. Bioelectron., 89, 998, 10.1016/j.bios.2016.10.045
Hu, 2017, Dual-signal readout nanospheres for rapid point-of-care detection of ebola virus glycoprotein, Anal. Chem., 89, 13105, 10.1021/acs.analchem.7b02222
Xiang, 2020, Evaluation of enzyme-linked immunoassay and colloidal gold-immunochromatographic assay kit for detection of novel coronavirus (SARS-Cov-2) causing an outbreak of pneumonia (COVID-19), medRxiv
Peng, 2007, Comparison of a new gold-immunochromatographic assay for the detection of antibodies against avian influenza virus with hemagglutination inhibition and agar gel immunodiffusion assays, Vet. Immunol. Immunopathol., 117, 17, 10.1016/j.vetimm.2007.01.022
Xia, 2019, Smartphone-based point-of-care microfluidic platform fabricated with a ZnO nanorod template for colorimetric virus detection, ACS Sens., 4, 3298, 10.1021/acssensors.9b01927
Moitra, 2020, Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles, ACS Nano, 14, 7617, 10.1021/acsnano.0c03822
Bai, 2016, 2D layered materials of rare-earth Er-doped MoS2 with NIR-to-NIR down-and up-conversion photoluminescence, Adv. Mater., 28, 7472, 10.1002/adma.201601833
Lyu, 2019, Observation and theoretical analysis of near-infrared luminescence from CVD grown lanthanide Er doped monolayer MoS2 triangles, Appl. Phys. Lett., 115, 153105, 10.1063/1.5120173
Song, 2020, Sonoactivated chemodynamic therapy: a robust ROS generation nanotheranostic eradicates multidrug-resistant bacterial infection, Adv. Funct. Mater., 30, 2003587, 10.1002/adfm.202003587
Zhu, 2013, Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules, J. Am. Chem. Soc., 135, 5998, 10.1021/ja4019572
Geissler, 2009, Microfluidic patterning of miniaturized DNA arrays on plastic substrates, ACS Appl. Mater. Interfaces, 1, 1387, 10.1021/am900285g
García-Campaña, 2009, Chemiluminescence detection coupled to capillary electrophoresis, Trends Analyt. Chem., 28, 973, 10.1016/j.trac.2009.05.003
Iranifam, 2013, Analytical applications of chemiluminescence-detection systems assisted by magnetic microparticles and nanoparticles, Trends Analyt. Chem., 51, 51, 10.1016/j.trac.2013.05.014
He, 2013, Chemiluminescence analysis for HBV-DNA hybridization detection with magnetic nanoparticles based DNA extraction from positive whole blood samples, J. Biomed. Nanotechnol., 9, 267, 10.1166/jbn.2013.1478
Parolo, 2013, Paper-based nanobiosensors for diagnostics, Chem. Soc. Rev., 42, 450, 10.1039/C2CS35255A
Yang, 2015, Chemiluminescent labels released from long spacer arm-functionalized magnetic particles: a novel strategy for ultrasensitive and highly selective detection of pathogen infections, ACS Appl. Mater. Interfaces, 7, 774, 10.1021/am507203s