Each 2n-by-2n complex symplectic matrix is a product of n+ 1 commutators of J-symmetries

Linear Algebra and Its Applications - Tập 517 - Trang 53-62 - 2017
Ralph John de la Cruz1, Kennett dela Rosa1
1Institute of Mathematics, University of the Philippines, Diliman, Quezon City 1101, Philippines

Tài liệu tham khảo

Cartan, 1938, La Théorie des Spineurs I, II, vols. 643 and 701 de Gosson, 1985 de la Cruz, 2015, Each symplectic matrix is a product of four symplectic involutions, Linear Algebra Appl., 466, 382, 10.1016/j.laa.2014.10.016 de la Cruz, 2014, The Cartan–Dieudonné–Scherk theorems for complex S-orthogonal matrices, Linear Algebra Appl., 458, 251, 10.1016/j.laa.2014.06.007 De la Rosa, 2012, The J-Householder matrices, Linear Algebra Appl., 436, 1189, 10.1016/j.laa.2011.08.002 Dieudonné, 1981, Sur les groupes classiques, vol. 1040 Ellers, 2011, Commutators of symmetries in characteristic 2, Linear Algebra Appl., 434, 1588, 10.1016/j.laa.2010.11.031 Fuller, 2011, A constructive proof of the Cartan–Dieudonné–Scherk theorem in the real or complex case, J. Pure Appl. Algebra, 215, 1116, 10.1016/j.jpaa.2010.08.002 Hahn, 1996, The elements of the orthogonal group Ωn(V) as products of commutators of symmetries, J. Algebra, 184, 927, 10.1006/jabr.1996.0292 Merino, 2010, On the ϕJ polar decomposition of matrices, Linear Algebra Appl., 432, 1165, 10.1016/j.laa.2009.10.026 Scherk, 1950, On the decomposition of orthogonalities into symmetries, Proc. Amer. Math. Soc., 1, 481, 10.1090/S0002-9939-1950-0036762-3 Salam, 2008, Optimal symplectic Householder transformations for SR decomposition, Linear Algebra Appl., 429, 1334, 10.1016/j.laa.2008.02.029 You, 1999, Products of commutators of dilatations, Linear Algebra Appl., 291, 51, 10.1016/S0024-3795(98)10222-7 Zheng, 1999, Products of commutators of symplectic transvections, Chinese Ann. Math. Ser. A, 20, 277 You, 2001, The elements of the special linear group SLnF as products of commutators of transvections, Adv. Math. (China), 30, 133 Zheng, 2002, Decomposition of matrices into commutators of involutions, Linear Algebra Appl., 347, 1, 10.1016/S0024-3795(01)00597-3