Each 2n-by-2n complex symplectic matrix is a product of n+ 1 commutators of J-symmetries
Tài liệu tham khảo
Cartan, 1938, La Théorie des Spineurs I, II, vols. 643 and 701
de Gosson, 1985
de la Cruz, 2015, Each symplectic matrix is a product of four symplectic involutions, Linear Algebra Appl., 466, 382, 10.1016/j.laa.2014.10.016
de la Cruz, 2014, The Cartan–Dieudonné–Scherk theorems for complex S-orthogonal matrices, Linear Algebra Appl., 458, 251, 10.1016/j.laa.2014.06.007
De la Rosa, 2012, The J-Householder matrices, Linear Algebra Appl., 436, 1189, 10.1016/j.laa.2011.08.002
Dieudonné, 1981, Sur les groupes classiques, vol. 1040
Ellers, 2011, Commutators of symmetries in characteristic 2, Linear Algebra Appl., 434, 1588, 10.1016/j.laa.2010.11.031
Fuller, 2011, A constructive proof of the Cartan–Dieudonné–Scherk theorem in the real or complex case, J. Pure Appl. Algebra, 215, 1116, 10.1016/j.jpaa.2010.08.002
Hahn, 1996, The elements of the orthogonal group Ωn(V) as products of commutators of symmetries, J. Algebra, 184, 927, 10.1006/jabr.1996.0292
Merino, 2010, On the ϕJ polar decomposition of matrices, Linear Algebra Appl., 432, 1165, 10.1016/j.laa.2009.10.026
Scherk, 1950, On the decomposition of orthogonalities into symmetries, Proc. Amer. Math. Soc., 1, 481, 10.1090/S0002-9939-1950-0036762-3
Salam, 2008, Optimal symplectic Householder transformations for SR decomposition, Linear Algebra Appl., 429, 1334, 10.1016/j.laa.2008.02.029
You, 1999, Products of commutators of dilatations, Linear Algebra Appl., 291, 51, 10.1016/S0024-3795(98)10222-7
Zheng, 1999, Products of commutators of symplectic transvections, Chinese Ann. Math. Ser. A, 20, 277
You, 2001, The elements of the special linear group SLnF as products of commutators of transvections, Adv. Math. (China), 30, 133
Zheng, 2002, Decomposition of matrices into commutators of involutions, Linear Algebra Appl., 347, 1, 10.1016/S0024-3795(01)00597-3