Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression

Nature Genetics - Tập 50 Số 5 - Trang 668-681 - 2018
Naomi R. Wray1, Stephan Ripke2, Manuel Mattheisen3, Maciej Trzaskowski1, Enda M. Byrne1, Abdel Abdellaoui4, Mark J. Adams5, Esben Agerbo6, Tracy Air7, Till F. M. Andlauer8, Silviu‐Alin Bacanu9, Marie Bækvad‐Hansen6, Aartjan T.F. Beekman10, Tim B. Bigdeli9, Elisabeth B. Binder8, Douglas Blackwood5, Julien Bryois11, Henriette N. Buttenschøn12, Jonas Bybjerg‐Grauholm6, Na Cai13, Enrique Castelao14, Jane Christensen3, Toni‐Kim Clarke5, Jonathan R. I. Coleman15, Lucía Colodro‐Conde16, Baptiste Couvy‐Duchesne17, Nick Craddock18, Gregory E. Crawford19, Cheynna Crowley20, Hassan S. Dashti2, Gail Davies21, Ian J. Deary21, Franziska Degenhardt22, Eske M. Derks16, Neşe Direk23, Conor V. Dolan4, Erin C. Dunn24, Thalia C. Eley15, Nicholas Eriksson25, Valentina Escott‐Price26, Farnush Hassan Farhadi Kiadeh27, Hilary K. Finucane28, Andreas J. Forstner22, Josef Frank29, Héléna A. Gaspar15, Michael O’Donovan30, Paola Giusti‐Rodríguez31, Fernando S. Goes32, Scott D. Gordon33, Jakob Grove6, Lynsey S. Hall5, Eilís Hannon34, Christine Søholm Hansen6, Thomas Hansen35, Stefan Herms22, Ian B. Hickie36, Per Hoffmann22, Georg Homuth37, Carsten Horn38, Jouke‐Jan Hottenga4, David M. Hougaard6, Ming Hu39, Craig Hyde40, Stefan Kloiber41, Anna Jansen10, Fulai Jin42, Eric Jorgenson43, Joshua W. Knowles44, Isaac S. Kohane45, Julia Kraft46, Warren W. Kretzschmar47, Jesper Krogh48, Zoltán Kutalik49, Jacqueline M. Lane2, Yihan Li47, Yun Li20, Penelope A. Lind16, Xiaoxiao Liu50, Leina Lu50, Donald J. MacIntyre51, Dean F. MacKinnon32, Robert Maier17, Wolfgang Maier52, Jonathan Marchini53, Hamdi Mbarek4, Patrick J. McGrath54, Peter McGuffin15, Sarah E. Medland16, Divya Mehta17, Christel M. Middeldorp4, Reedik Mägi55, Yuri Milaneschi10, Lili Milani55, Jonathan Mill34, Francis J. McMahon32, Grant W. Montgomery1, Sara Mostafavi56, Niamh Mullins15, Matthias Nauck57, Bernard Ng58, Michel G. Nivard4, Dale R. Nyholt59, Paul F. O’Reilly15, Högni Óskarsson60, Michael J. Owen61, Jodie N. Painter16, Carsten Bøcker Pedersen62, Roseann E. Peterson9, Erik Pettersson11, David Schlessinger10, Giorgio Pistis14, Daniëlle Posthuma63, Shaun Purcell64, Jorge A. Quiroz65, Per Qvist6, John P. Rice66, Brien P. Riley9, Margarita Rivera15, Saira Saeed Mirza67, Richa Saxena68, Robert A. Schoevers69, Eva C. Schulte70, Ling Shen43, Jianxin Shi71, Stanley I. Shyn72, Engilbert Sigurðsson73, Grant B. C. Sinnamon74, Johannes H. Smit10, Daniel J. Smıth75, Hreinn Stefánsson76, Stacy Steinberg76, Craig A. Stockmeier77, Fabian Streit29, Jana Strohmaier29, Katherine E. Tansey78, Henning Teismann79, Alexander Teumer80, Wesley K. Thompson81, Pippa A. Thomson82, Thorgeir E. Thorgeirsson76, Qingqin S. Li25, Matthew Traylor83, Jens Treutlein29, Vassily Trubetskoy46, André G. Uitterlinden84, Daniel Umbricht85, Sandra Van der Auwera86, Albert M. van Hemert87, Alexander Viktorin11, Peter M. Visscher17, Yunpeng Wang81, Bradley T. Webb88, Shantel Weinsheimer81, Jürgen Wellmann79, Gonneke Willemsen4, Stephanie H. Witt29, Yang Wu1, Hualin Simon Xi89, Jian Yang17, Futao Zhang1, Volker Arolt90, Bernhard T. Baune7, Kenneth I. Berger79, Dorret I. Boomsma4, Sven Cichon91, Udo Dannlowski90, E. C. J. de Geus4, J. Raymond DePaulo32, Enrico Domenici92, Katharina Domschke93, Tõnu Esko55, Hans J. Grabe86, Steven P. Hamilton94, Caroline Hayward95, Andrew C. Heath66, David A. Hinds25, Kenneth S. Kendler9, Glyn Lewis96, Susanne Lucae41, Pamela Madden66, Patrik K. E. Magnusson11, Nicholas G. Martin33, Andrew M. McIntosh21, Andres Metspalu55, Ole Mors97, Preben Bo Mortensen62, Bertram Müller‐Myhsok98, Merete Nordentoft99, Markus M. Nöthen100, Sara A. Paciga101, Nancy L. Pedersen11, Brenda W.J.H. Penninx10, Roy H. Perlis102, David J. Porteous82, James B. Potash103, Martin Preisig14, Marcella Rietschel29, Thomas G. Schulze32, Jordan W. Smoller104, Kári Stefánsson76, Henning Tiemeier67, Rudolf Uher105, Henry Völzke80, Myrna M. Weissman54, Thomas Werge81, Ashley R. Winslow106, Cathryn M. Lewis15, Douglas F. Levinson107, Gerome Breen15, Anders D. Børglum6, Patrick F. Sullivan31
1Institute for Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
2Medical and Population Genetics, Broad Institute, Cambridge, MA USA
3Department of Biomedicine, Aarhus University, Aarhus, Denmark
4Department of Biological Psychology and EMGO+ Institute for Health and Care Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
5Division of Psychiatry, University of Edinburgh, Edinburgh, UK
6iPSYCH, Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
7Discipline of Psychiatry, University of Adelaide, Adelaide, South Australia, Australia
8Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
9Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
10Department of Psychiatry, Vrije Universiteit Medical Center and GGZ inGeest, Amsterdam, The Netherlands
11Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
12iSEQ, Centre for Integrative Sequencing, Aarhus University, Aarhus, Denmark
13Statistical Genomics and Systems Genetics, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK
14Department of Psychiatry, University Hospital of Lausanne, Prilly, Switzerland
15MRC Social, Genetic and Developmental Psychiatry Centre, King’s College London, London, UK
16Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
17Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
18Psychological Medicine, Cardiff University, Cardiff, UK
19Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
20Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
21Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
22Institute of Human Genetics, University of Bonn, Bonn, Germany
23Psychiatry, Dokuz Eylul University School of Medicine, Izmir, Turkey
24Stanley Center for Psychiatric Research, Broad Institute, Cambridge, MA, USA
25Research, 23andMe, Inc., Mountain View, CA, USA
26Neuroscience and Mental Health, Cardiff University, Cardiff, UK
27Bioinformatics, University of British Columbia, Vancouver, British Columbia, Canada
28Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
29Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
30Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
31Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
32Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
33Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
34University of Exeter Medical School, Exeter, UK
35Danish Headache Centre, Department of Neurology, Rigshospitalet, Glostrup, Denmark
36Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
37Interfaculty Institute for Genetics and Functional Genomics, Department of Functional Genomics, University Medicine and Ernst Moritz Arndt University Greifswald, Greifswald, Germany
38Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann–La Roche, Ltd, Basel, Switzerland
39Quantitative Health Sciences, Cleveland Clinic, Cleveland, OH, USA
40Statistics, Pfizer Global Research and Development, Groton, CT, USA
41Max Planck Institute of Psychiatry, Munich, Germany
42Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
43Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA;
44Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
45Informatics Program, Boston Children's Hospital, Boston, MA, USA
46Department of Psychiatry and Psychotherapy, Universitätsmedizin Berlin Campus Charité Mitte, Berlin, Germany
47Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
48Department of Endocrinology at Herlev University Hospital, University of Copenhagen, Copenhagen, Denmark
49Swiss Institute of Bioinformatics, Lausanne, Switzerland
50Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
51Mental Health, NHS 24, Glasgow, UK
52Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
53Statistics, University of Oxford, Oxford, UK
54Psychiatry, Columbia University College of Physicians and Surgeons, New York, NY, USA
55Estonian Genome Center, University of Tartu, Tartu, Estonia
56Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
57DZHK (German Centre for Cardiovascular Research), partner site Greifswald, University Medicine, University Medicine Greifswald, Greifswald, Germany
58Statistics, University of British Columbia, Vancouver, British Columbia, Canada
59Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
60Humus, Reykjavik, Iceland
61MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
62National Centre for Register-Based Research, Aarhus University, Aarhus, Denmark
63Complex Trait Genetics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
64Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
65Solid Biosciences, Boston, MA, USA
66Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
67Epidemiology, Erasmus MC, Rotterdam, The Netherlands
68Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA;
69Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
70Department of Psychiatry and Psychotherapy, Medical Center of the University of Munich, Campus Innenstadt, Munich, Germany
71Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA.
72Behavioral Health Services, Kaiser Permanente Washington, Seattle, WA, USA
73Faculty of Medicine, Department of Psychiatry, University of Iceland, Reykjavik, Iceland
74School of Medicine and Dentistry, James Cook University, Townsville, Queensland, Australia
75Institute of Health and Wellbeing, University of Glasgow, Glasgow, UK
76deCODE genetics/Amgen, Inc., Reykjavik, Iceland
77Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
78College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
79Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
80Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
81Institute of Biological Psychiatry, Mental Health Center Sct. Hans, Mental Health Services Capital Region of Denmark, Copenhagen, Denmark
82Medical Genetics Section, CGEM, IGMM, University of Edinburgh, Edinburgh, UK
83Clinical Neurosciences, University of Cambridge, Cambridge, UK
84Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
85Roche Pharmaceutical Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases Discovery and Translational Medicine Area, Roche Innovation Center Basel, F. Hoffmann–La Roche, Ltd, Basel, Switzerland
86Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
87Department of Psychiatry, Leiden University Medical Center, Leiden, the Netherlands
88Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
89Computational Sciences Center of Emphasis, Pfizer Global Research and Development, Cambridge, MA, USA
90Department of Psychiatry, University of Münster, Munster, Germany
91Human Genomics Research Group, Department of Biomedicine, University of Basel, Basel, Switzerland
92Centre for Integrative Biology, Università degli Studi di Trento, Trento, Italy
93Department of Psychiatry and Psychotherapy, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
94Psychiatry, Kaiser Permanente Northern California, San Francisco, CA, USA
95MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
96Division of Psychiatry, University College London, London, UK
97Psychosis Research Unit, Aarhus University Hospital, Risskov, Aarhus, Denmark
98Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
99Mental Health Center Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
100Life & Brain Center, Department of Genomics, University of Bonn, Bonn, Germany
101Human Genetics and Computational Biomedicine, Pfizer Global Research and Development, Groton, CT, USA
102Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA.
103Psychiatry, University of Iowa, Iowa City, IA, USA
104Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Boston, MA, USA
105Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
106Human Genetics and Computational Biomedicine, Pfizer Global Research and Development, Cambridge, MA, USA
107Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kessler, R. C. & Bromet, E. J. The epidemiology of depression across cultures. Annu. Rev. Public Health 34, 119–138 (2013).

Judd, L. L. The clinical course of unipolar major depressive disorders. Arch. Gen. Psychiatry 54, 989–991 (1997).

Lopez, A. D., Mathers, C. D., Ezzati, M., Jamison, D. T. & Murray, C. J. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 367, 1747–1757 (2006).

Wittchen, H. U. et al. The size and burden of mental disorders and other disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 21, 655–679 (2011).

Ferrari, A. J. et al. Burden of depressive disorders by country, sex, age, and year: findings from the global burden of disease study 2010. PLoS Med. 10, e1001547 (2013).

Angst, F., Stassen, H. H., Clayton, P. J. & Angst, J. Mortality of patients with mood disorders: follow-up over 34–38 years. J. Affect. Disord. 68, 167–181 (2002).

Gustavsson, A. et al. Cost of disorders of the brain in Europe 2010. Eur. Neuropsychopharmacol. 21, 718–779 (2011).

Murray, C. J. et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380, 2197–2223 (2012).

Sullivan, P. F., Neale, M. C. & Kendler, K. S. Genetic epidemiology of major depression: review and meta-analysis. Am. J. Psychiatry 157, 1552–1562 (2000).

Rice, F., Harold, G. & Thapar, A. The genetic aetiology of childhood depression: a review. J. Child Psychol. Psychiatry 43, 65–79 (2002).

Viktorin, A. et al. Heritability of perinatal depression and genetic overlap with nonperinatal depression. Am. J. Psychiatry 73, 158–165 (2016).

Levinson, D. F. et al. Genetic studies of major depressive disorder: why are there no GWAS findings, and what can we do about it. Biol. Psychiatry 76, 510–512 (2014).

Major Depressive Disorder Working Group of the PGC. A mega-analysis of genome-wide association studies for major depressive disorder. Mol. Psychiatry 18, 497–511 (2013).

Hek, K. et al. A genome-wide association study of depressive symptoms. Biol. Psychiatry 73, 667–678 (2013).

CONVERGE Consortium. Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 523, 588–591 (2015).

Okbay, A. et al. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat. Genet. 48, 624–633 (2016).

Sullivan, P. F. et al. Psychiatric genomics. An update and an agenda. Am. J. Psychiatry 175, 15–27 (2018).

Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. Five years of GWAS discovery. Am. J. Hum. Genet. 90, 7–24 (2012).

Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

Psychiatric GWAS Consortium Bipolar Disorder Working Group. Large-scale genome-wide association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. Genet. 43, 977–983 (2011).

Cross-Disorder Group of the Psychiatric Genomics Consortium. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat. Genet. 45, 984–994 (2013).

Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

Wray, N. R. et al. Genome-wide association study of major depressive disorder: new results, meta-analysis, and lessons learned. Mol. Psychiatry 17, 36–48 (2012).

Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

Meier, S. M. et al. High loading of polygenic risk in cases with chronic schizophrenia. Mol. Psychiatry 21, 969–974 (2016).

Yang, J. et al. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44, 369–375 (2012).

Wray, N. R. & Maier, R. Genetic basis of complex genetic disease: the contribution of disease heterogeneity to missing heritability. Curr. Epidemiol. Rep. 1, 220–227 (2014).

Hyde, C. L. et al. Identification of 15 genetic loci associated with risk of major depression in individuals of European descent. Nat. Genet. 48, 1031–1036 (2016).

Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197–206 (2015).

Berndt, S. I. et al. Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nat. Genet. 45, 501–512 (2013).

Bradfield, J. P. et al. A genome-wide association meta-analysis identifies new childhood obesity loci. Nat. Genet. 44, 526–531 (2012).

Speliotes, E. K. et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat. Genet. 42, 937–948 (2010).

Willer, C. J. et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet. 41, 25–34 (2009).

Thorleifsson, G. et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat. Genet. 41, 18–24 (2009).

Fogel, B. L. et al. RBFOX1 regulates both splicing and transcriptional networks in human neuronal development. Hum. Mol. Genet. 21, 4171–4186 (2012).

Gehman, L. T. et al. The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain. Nat. Genet. 43, 706–711 (2011).

Pariante, C. M. & Lightman, S. L. The HPA axis in major depression: classical theories and new developments. Trends Neurosci. 31, 464–468 (2008).

Choi, Y. et al. SALM5 trans-synaptically interacts with LAR-RPTPs in a splicing-dependent manner to regulate synapse development. Sci. Rep. 6, 26676 (2016).

Mah, W. et al. Selected SALM (synaptic adhesion-like molecule) family proteins regulate synapse formation. J. Neurosci. 30, 5559–5568 (2010).

Zhu, Y. et al. Neuron-specific SALM5 limits inflammation in the CNS via its interaction with HVEM. Sci. Adv. 2, e1500637 (2016).

Amiel, J. et al. Mutations in TCF4, encoding a class I basic helix-loop-helix transcription factor, are responsible for Pitt–Hopkins syndrome, a severe epileptic encephalopathy associated with autonomic dysfunction. Am. J. Hum. Genet. 80, 988–993 (2007).

Akbarian, S. et al. The PsychENCODE project. Nat. Neurosci. 18, 1707–1712 (2015).

GTEx Consortium. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science 348, 648–660 (2015).

Schmaal, L. et al. Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Mol. Psychiatry 22, 900–909 (2017).

Cahoy, J. D. et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28, 264–278 (2008).

Finucane, H. K. et al. Partitioning heritability by functional category using GWAS summary statistics. Nat. Genet. 47, 1228–1235 (2015).

Lindblad-Toh, K. et al. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478, 476–482 (2011).

Simonti, C. N. et al. The phenotypic legacy of admixture between modern humans and Neandertals. Science 351, 737–741 (2016).

Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).

Fromer, M. et al. Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat. Neurosci. 19, 1442–1453 (2016).

Smemo, S. et al. Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507, 371–375 (2014).

Won, H. et al. Chromosome conformation elucidates regulatory relationships in developing human brain. Nature 538, 523–527 (2016).

Martin, J. S. et al. HUGIn. Hi-C Unifying Genomic Interrogator. Bioinformatics 33, 3793–3795 (2017).

Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium. Psychiatric genome-wide association study analyses implicate neuronal, immune and histone pathways. Nat. Neurosci. 18, 199–209 (2015).

De Rubeis, S. et al. Synaptic, transcriptional and chromatin genes disrupted in autism. Nature 515, 209–215 (2014).

Genovese, G. et al. Increased burden of ultra-rare protein-altering variants among 4,877 individuals with schizophrenia. Nat. Neurosci. 19, 1433–1441 (2016).

Gaspar, H. A. & Breen, G. Drug enrichment and discovery from schizophrenia genome-wide association results: an analysis and visualisation approach. Sci. Rep. 7, 12460 (2017).

Breen, G. et al. Translating genome-wide association findings into new therapeutics for psychiatry. Nat. Neurosci. 19, 1392–1396 (2016).

Zheng, J. et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis. Bioinformatics 33, 272–279 (2017).

Sniekers, S. et al. Genome-wide association meta-analysis of 78,308 individuals identifies new loci and genes influencing human intelligence. Nat. Genet. 49, 1107–1112 (2017).

Okbay, A. et al. Genome-wide association study identifies 74 loci associated with educational attainment. Nature 533, 539–542 (2016).

Nikpay, M. et al. A comprehensive 1000 Genomes–based genome-wide association meta-analysis of coronary artery disease. Nat. Genet. 47, 1121–1130 (2015).

Zhu, Z. et al. Causal associations between risk factors and common diseases inferred from GWAS summary data. Nat. Commun. 9, 224 (2018).

Wray, N. R., Lee, S. H. & Kendler, K. S. Impact of diagnostic misclassification on estimation of genetic correlations using genome-wide genotypes. Eur. J. Hum. Genet. 20, 668–674 (2012).

Hippocrates. The Aphorisms of Hippocrates (Collins & Co., New York, 1817).

Skene, N. G. et al. Genetic identification of brain cell types underlying schizophrenia. Nat. Genet. (in the press).

Yang, X. et al. Widespread expansion of protein interaction capabilities by alternative splicing. Cell 164, 805–817 (2016).

Zhang, X. et al. Cell-type-specific alternative splicing governs cell fate in the developing cerebral cortex. Cell 166, 1147–1162 (2016).

Kessler, R. C. et al. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). J. Am. Med. Assoc. 289, 3095–3105 (2003).

Hasin, D. S., Goodwin, R. D., Stinson, F. S. & Grant, B. F. Epidemiology of major depressive disorder: results from the National Epidemiologic Survey on Alcoholism and Related Conditions. Arch. Gen. Psychiatry 62, 1097–1106 (2005).

Kendler, K. S. et al. The structure of genetic and environmental risk factors for syndromal and subsyndromal common DSM-IV axis I and all axis II disorders. Am. J. Psychiatry 168, 29–39 (2011).

Kendler, K. S., Prescott, C. A., Myers, J. & Neale, M. C. The structure of genetic and environmental risk factors for common psychiatric and substance use disorders in men and women. Arch. Gen. Psychiatry 60, 929–937 (2003).

Robinson, E. B. et al. Genetic risk for autism spectrum disorders and neuropsychiatric variation in the general population. Nat. Genet. 48, 552–555 (2016).

Middeldorp, C. M. et al. A genome-wide association meta-analysis of attention-deficit/hyperactivity disorder symptoms in population-based pediatric cohorts. J. Am. Acad. Child. Adolesc. Psychiatry 55, 896–905 (2016).

Kendell, R. E. The classification of depressions: a review of contemporary confusion. Br. J. Psychiatry 129, 15–28 (1976).

Verduijn, J. et al. Using clinical characteristics to identify which patients with major depressive disorder have a higher genetic load for three psychiatric disorders. Biol. Psychiatry 81, 316–324 (2017).

Smith, B. H. et al. Cohort profile: Generation Scotland: Scottish Family Health Study (GS:SFHS). The study, its participants and their potential for genetic research on health and illness. Int. J. Epidemiol. 42, 689–700 (2013).

Fernandez-Pujals, A. M. et al. Epidemiology and heritability of major depressive disorder, stratified by age of onset, sex, and illness course in Generation Scotland: Scottish Family Health Study (GS:SFHS). PLoS One 10, e0142197 (2015).

Banda, Y. et al. Characterizing race/ethnicity and genetic ancestry for 100,000 subjects in the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. Genetics 200, 1285–1295 (2015).

Pedersen, C. B. et al. The iPSYCH2012 case–cohort sample: new directions for unravelling genetic and environmental architectures of severe mental disorders. Mol. Psychiatry 23, 6–14 (2018).

Allen, N. E., Sudlow, C., Peakman, T., Collins, R. & UK Biobank. UK Biobank data: come and get it. Sci. Transl. Med. 6, 224ed4 (2014).

Demontis, D. et al. Discovery of the first genome-wide significant risk loci for ADHD. Preprint at bioRxiv https://www.biorxiv.org/content/early/2017/06/03/145581 (2017).

Boraska, V. et al. A genome-wide association study of anorexia nervosa. Mol. Psychiatry 19, 1085–1094 (2014).

Otowa, T. et al. Meta-analysis of genome-wide association studies of anxiety disorders. Mol. Psychiatry 21, 1391–1399 (2016).

Grove, J. et al. Common risk variants identified in autism spectrum disorder. Preprint at bioRxiv https://www.biorxiv.org/content/early/2017/11/27/224774 (2017).

Tobacco and Genetics Consortium. Genome-wide meta-analyses identify multiple loci associated with smoking behavior. Nat. Genet. 42, 441–447 (2010).

Deary, V. et al. Genetic contributions to self-reported tiredness. Mol. Psychiatry 23, 609–620 (2018).

Rietveld, C. A. et al. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science 340, 1467–1471 (2013).

Lu, Y. et al. New loci for body fat percentage reveal link between adiposity and cardiometabolic disease risk. Nat. Commun. 7, 10495 (2016).

Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187–196 (2015).

Teslovich, T. M. et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).

Perry, J. R. et al. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Nature 514, 92–97 (2014).

Barban, N. et al. Genome-wide analysis identifies 12 loci influencing human reproductive behavior. Nat. Genet. 48, 1462–1472 (2016).

Pilling, L. C. et al. Human longevity is influenced by many genetic variants: evidence from 75,000 UK Biobank participants. Aging 8, 547–560 (2016).

Patel, Y. M. et al. Novel association of genetic markers affecting CYP2A6 activity and lung cancer risk. Cancer Res. 76, 5768–5776 (2016).

World Health Organization. International Classification of Diseases (World Health Organization, Geneva, 1978).

World Health Organization. International Classification of Diseases (World Health Organization, Geneva, 1992).

American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (American Psychiatric Association, Washington, DC, 1994).

Abecasis, G. R. et al. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

ENCODE Project Consortium. A user’s guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 9, e1001046 (2011).

Roadmap Epigenomics Consortium. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

Vernot, B. et al. Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals. Science 352, 235–239 (2016).

Bryois, J. et al. Evaluation of chromatin accessibility in prefrontal cortex of schizophrenia cases and controls. Nat. Commun. (in the press).

Zhang, Y. et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 9, R137 (2008).

Ross-Innes, C. S. et al. Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481, 389–393 (2012).

Finucane, H. et al. Heritability enrichment of specifically expressed genes identifies disease-relevant tissues and cell types. Nat. Genet. https://dx.doi.org/10.1038/s41588-018-0081-4 (2018).

Zhernakova, D. V. et al. Identification of context-dependent expression quantitative trait loci in whole blood. Nat. Genet. 49, 139–145 (2017).

Jansen, R. et al. Conditional eQTL analysis reveals allelic heterogeneity of gene expression. Hum. Mol. Genet. 26, 1444–1451 (2017).

Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501, 506–511 (2013).

Ng, B. et al. An xQTL map integrates the genetic architecture of the human brain’s transcriptome and epigenome. Nat. Neurosci. 20, 1418–1426 (2017).

Hannon, E., Weedon, M., Bray, N., O’Donovan, M. & Mill, J. Pleiotropic effects of trait-associated genetic variation on DNA methylation: utility for refining GWAS loci. Am. J. Hum. Genet. 100, 954–959 (2017).

de Leeuw, C. A., Neale, B. M., Heskes, T. & Posthuma, D. The statistical properties of gene-set analysis. Nat. Rev. Genet. 17, 353–364 (2016).

de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015).

Turner, T. N. et al. denovo-db: a compendium of human de novo variants. Nucleic Acids Res. 45 (D1), D804–D811 (2017).

Pirooznia, M. et al. High-throughput sequencing of the synaptome in major depressive disorder. Mol. Psychiatry 21, 650–655 (2016).

Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).

Wagner, A. H. et al. DGIdb 2.0: mining clinically relevant drug–gene interactions. Nucleic Acids Res. 44 (D1), D1036–D1044 (2016).

Roth, B. L., Kroeze, W. K., Patel, S. & Lopez, E. The multiplicity of serotonin receptors: uselessly diverse molecules or an embarrasment of riches? Neuroscientist 6, 252–262 (2000).

Olier, I., Vellido, A. & Giraldo, J. Kernel generative topographic mapping. in ESANN 2010 Proc. 28–30 (2010).

Smith, G. D. & Ebrahim, S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int. J. Epidemiol. 32, 1–22 (2003).

Wooldridge, J. M. Introductory Econometrics: A Modern Approach (Cengage Learning, Boston, MA, 2015).

Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int. J. Epidemiol. 44, 512–525 (2015).