Jacobi elliptic wave solutions for two variable coefficients cylindrical Korteweg–de Vries models arising in dusty plasmas by using direct reduction method
Tài liệu tham khảo
Korteweg, 1895, On the change of form of long wavesadvancing in a rectangular canal and on a new type of long stationary waves, Philos. Mag., 39, 422, 10.1080/14786449508620739
Miura, 1968, Korteweg–de Vries equation and generalizations I A remarkable explicit nonlinear transformation, J. Math. Phys., 9, 1202, 10.1063/1.1664700
Xing, 2013, Nonautonomous motion study on accelerated and decelerated solitons for the variable-coefficient Lenells-Fokas model, Chaos, 23
Lü, 2015, Analytical study on a two-dimensional Korteweg–de Vries model with bilinear representation, Bäcklund transformation and soliton solutions, Appl. Math. Model., 39, 3221, 10.1016/j.apm.2014.10.046
Lü, 2015, A direct bilinear Bäcklund transformation of a (2+1)-dimensional Korteweg–de Vries-like model, Appl. Math. Lett., 50, 37, 10.1016/j.aml.2015.06.003
Lü, 2015, Vector bright solitons associated withpositive coherent coupling via Darboux transformation, Chaos, 25, 123103, 10.1063/1.4936674
Lü, 2015, Envelope bright- and dark-soliton solutions for the Gerdjikov–Ivanov model, Nonlinear Dynam., 82, 1211, 10.1007/s11071-015-2227-6
Lü, 2016, A note on rational solutions to a Hirota-Satsuma-like equation, Appl. Math. Lett., 58, 13, 10.1016/j.aml.2015.12.019
Lü, 2016, Rational solutions to an extended Kadomtsev–Petviashvili-like equation with symbolic computation, Comput. Math. Appl., 71, 1560, 10.1016/j.camwa.2016.02.017
Lü, 2016, Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation, Nonlinear Dynam., 85, 1217, 10.1007/s11071-016-2755-8
Lü, 2016, Constructing lumpsolutions to a generalized Kadomtsev–Petviashvili–Boussinesq equation, Nonlinear Dynam., 86, 523, 10.1007/s11071-016-2905-z
Lü, 2017, Lump dynamics of a generalized two-dimensional Boussinesq equation in shallow water, Nonlinear Dyn., 90, 1
Lin, 2017, Resonant multiple wave solutions to a new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation: Linear superposition principle, Appl. Math. Lett., 78, 112, 10.1016/j.aml.2017.10.013
Demiary, 2007, The effect of a bump in an elastic tube on wave propagation in a viscous fluid of variable viscosity, J. Comput. Appl. Math., 202, 328
Demiary, 2008, Nonlinear waves in an elastic tube with variable prestretch filled with a fluid of variable viscosity, Int. J. Nonlinear Mech., 43, 887, 10.1016/j.ijnonlinmec.2008.06.001
Triki, 2010, Solitary wave solutions for a generalized KdV-mKdV equation with variable coefficients, Math. Comput. Simulation, 80, 1867, 10.1016/j.matcom.2010.02.001
Guo, 2012, (3+1)-dimensional cylindrical Korteweg–de Vries equation for nonextensive dust acoustic waves: Symbolic computation and exact solutions, Phys. Plasmas, 19, 063701, 10.1063/1.4729682
Moussa, 2008, Auto-Bäcklund transformation and similarity reductions to the variable coefficients variant Boussinesq system, Phys. Lett. A, 372, 1429, 10.1016/j.physleta.2007.09.056
Moussa, 2009, Two applications of the homogeneous balance method for solving the generalized Hirota-Satsuma coupled KdV system with variable coefficients, Int. J. Nonlinear Sci., 7, 29
Moussa, 2011, Direct reduction and exact solutions for generalized variable coefficients 2D KdV equation under some integrability conditions, Commun. Theor. Phys., 55, 551, 10.1088/0253-6102/55/4/03
El-Shiekh, 2013, New exact solutions for the variable coefficient modified KdV equation using direct reduction method, Math. Methods Appl. Sci., 36, 1, 10.1002/mma.2561
Elwakil, 2004, New exact solutions for a generalized variable coefficients 2D KdV equation, Chaos Solitons Fractals, 19, 1083, 10.1016/S0960-0779(03)00276-5
Moussa, 2011, Direct reduction and exact solutions for the generalized variable coefficients 2D KdV equation undersome integrability conditions, Commun. Theor. Phys., 55, 551, 10.1088/0253-6102/55/4/03
El-Shiekh, 2013, New exact solutions for the variableCoefficient modified KdV equation using direct reduction method, Math. Methods Appl. Sci., 36
Tian, 2007, Symbolic computation oncylindrical-modified dust-ion-acoustic nebulons in dusty plasmas, Phys. Lett. A, 362, 283, 10.1016/j.physleta.2006.10.094
El-Shiekh, 2015, Direct similarity reduction and new exact solutions for the variable-coefficient Kadomtsev–Petviashvili equation, Z. Naturforsch. A, 70, 445, 10.1515/zna-2015-0057
Elshiekh, 2017, Periodic and solitary wave solutions for ageneralized variable-coefficient Boiti-Leon-Pempinlli system, Comput. Math. Appl., 73, 1414, 10.1016/j.camwa.2017.01.008
Yomba, 2005, The modified extended Fan’s sub-equation method and its application to (2 + 1)-dimensional dispersive long wave equation, Chaos Solitons Fractals, 26, 785, 10.1016/j.chaos.2005.01.061
Abramowitz, 1964