Jacobi elliptic wave solutions for two variable coefficients cylindrical Korteweg–de Vries models arising in dusty plasmas by using direct reduction method

Computers & Mathematics with Applications - Tập 75 - Trang 1676-1684 - 2018
Rehab M. El-Shiekh

Tài liệu tham khảo

Korteweg, 1895, On the change of form of long wavesadvancing in a rectangular canal and on a new type of long stationary waves, Philos. Mag., 39, 422, 10.1080/14786449508620739 Miura, 1968, Korteweg–de Vries equation and generalizations I A remarkable explicit nonlinear transformation, J. Math. Phys., 9, 1202, 10.1063/1.1664700 Xing, 2013, Nonautonomous motion study on accelerated and decelerated solitons for the variable-coefficient Lenells-Fokas model, Chaos, 23 Lü, 2015, Analytical study on a two-dimensional Korteweg–de Vries model with bilinear representation, Bäcklund transformation and soliton solutions, Appl. Math. Model., 39, 3221, 10.1016/j.apm.2014.10.046 Lü, 2015, A direct bilinear Bäcklund transformation of a (2+1)-dimensional Korteweg–de Vries-like model, Appl. Math. Lett., 50, 37, 10.1016/j.aml.2015.06.003 Lü, 2015, Vector bright solitons associated withpositive coherent coupling via Darboux transformation, Chaos, 25, 123103, 10.1063/1.4936674 Lü, 2015, Envelope bright- and dark-soliton solutions for the Gerdjikov–Ivanov model, Nonlinear Dynam., 82, 1211, 10.1007/s11071-015-2227-6 Lü, 2016, A note on rational solutions to a Hirota-Satsuma-like equation, Appl. Math. Lett., 58, 13, 10.1016/j.aml.2015.12.019 Lü, 2016, Rational solutions to an extended Kadomtsev–Petviashvili-like equation with symbolic computation, Comput. Math. Appl., 71, 1560, 10.1016/j.camwa.2016.02.017 Lü, 2016, Study of lump dynamics based on a dimensionally reduced Hirota bilinear equation, Nonlinear Dynam., 85, 1217, 10.1007/s11071-016-2755-8 Lü, 2016, Constructing lumpsolutions to a generalized Kadomtsev–Petviashvili–Boussinesq equation, Nonlinear Dynam., 86, 523, 10.1007/s11071-016-2905-z Lü, 2017, Lump dynamics of a generalized two-dimensional Boussinesq equation in shallow water, Nonlinear Dyn., 90, 1 Lin, 2017, Resonant multiple wave solutions to a new (3+1)-dimensional generalized Kadomtsev-Petviashvili equation: Linear superposition principle, Appl. Math. Lett., 78, 112, 10.1016/j.aml.2017.10.013 Demiary, 2007, The effect of a bump in an elastic tube on wave propagation in a viscous fluid of variable viscosity, J. Comput. Appl. Math., 202, 328 Demiary, 2008, Nonlinear waves in an elastic tube with variable prestretch filled with a fluid of variable viscosity, Int. J. Nonlinear Mech., 43, 887, 10.1016/j.ijnonlinmec.2008.06.001 Triki, 2010, Solitary wave solutions for a generalized KdV-mKdV equation with variable coefficients, Math. Comput. Simulation, 80, 1867, 10.1016/j.matcom.2010.02.001 Guo, 2012, (3+1)-dimensional cylindrical Korteweg–de Vries equation for nonextensive dust acoustic waves: Symbolic computation and exact solutions, Phys. Plasmas, 19, 063701, 10.1063/1.4729682 Moussa, 2008, Auto-Bäcklund transformation and similarity reductions to the variable coefficients variant Boussinesq system, Phys. Lett. A, 372, 1429, 10.1016/j.physleta.2007.09.056 Moussa, 2009, Two applications of the homogeneous balance method for solving the generalized Hirota-Satsuma coupled KdV system with variable coefficients, Int. J. Nonlinear Sci., 7, 29 Moussa, 2011, Direct reduction and exact solutions for generalized variable coefficients 2D KdV equation under some integrability conditions, Commun. Theor. Phys., 55, 551, 10.1088/0253-6102/55/4/03 El-Shiekh, 2013, New exact solutions for the variable coefficient modified KdV equation using direct reduction method, Math. Methods Appl. Sci., 36, 1, 10.1002/mma.2561 Elwakil, 2004, New exact solutions for a generalized variable coefficients 2D KdV equation, Chaos Solitons Fractals, 19, 1083, 10.1016/S0960-0779(03)00276-5 Moussa, 2011, Direct reduction and exact solutions for the generalized variable coefficients 2D KdV equation undersome integrability conditions, Commun. Theor. Phys., 55, 551, 10.1088/0253-6102/55/4/03 El-Shiekh, 2013, New exact solutions for the variableCoefficient modified KdV equation using direct reduction method, Math. Methods Appl. Sci., 36 Tian, 2007, Symbolic computation oncylindrical-modified dust-ion-acoustic nebulons in dusty plasmas, Phys. Lett. A, 362, 283, 10.1016/j.physleta.2006.10.094 El-Shiekh, 2015, Direct similarity reduction and new exact solutions for the variable-coefficient Kadomtsev–Petviashvili equation, Z. Naturforsch. A, 70, 445, 10.1515/zna-2015-0057 Elshiekh, 2017, Periodic and solitary wave solutions for ageneralized variable-coefficient Boiti-Leon-Pempinlli system, Comput. Math. Appl., 73, 1414, 10.1016/j.camwa.2017.01.008 Yomba, 2005, The modified extended Fan’s sub-equation method and its application to (2 + 1)-dimensional dispersive long wave equation, Chaos Solitons Fractals, 26, 785, 10.1016/j.chaos.2005.01.061 Abramowitz, 1964