Heterojunction photocatalysts for degradation of the tetracycline antibiotic: a review
Tóm tắt
Antibiotic pollution is a major health issue inducing antibiotic resistance and the inefficiency of actual drugs, thus calling for improved methods to clean water and wastewater. Here we review the recent development of heterojunction photocatalysis and application in degrading tetracycline. We discuss mechanisms for separating photogenerated electron–hole pairs in different heterojunction systems such as traditional, p–n, direct Z-scheme, step-scheme, Schottky, and surface heterojunction. Degradation pathways of tetracycline during photocatalysis are presented. We compare the efficiency of tetracycline removal by various heterojunctions using quantum efficiency, space time yield, and figures of merit. Implications for the treatment of antibiotic-contaminated wastewater are discussed.
Tài liệu tham khảo
Abbas N, Rubab N, Kim KH, Chaudhry R, Manzoor S, Raza N, Tariq M, Lee J, Manzoor S (2021) The photocatalytic performance and structural characteristics of nickel cobalt ferrite nanocomposites after doping with bismuth. J Coll Interface Sci 594:902–913. https://doi.org/10.1016/j.jcis.2021.03.094
Acharya L, Nayak S, Pattnaik SP, Acharya R, Parida K (2020) Resurrection of boron nitride in p-n type-II boron nitride/B-doped-g-C3N4 nanocomposite during solid-state Z-scheme charge transfer path for the degradation of tetracycline hydrochloride. J Coll Interface Sci 566:211–223. https://doi.org/10.1016/j.jcis.2020.01.074
Akhil D, Lakshmi D, Senthil Kumar P, Vo D-VN, Kartik A (2021) Occurrence and removal of antibiotics from industrial wastewater. Environ Chem Lett 19:1477–1507. https://doi.org/10.1007/s10311-020-01152-0
Alshamsi HA, Beshkar F, Amiri O, Salavati-Niasari M (2021) Porous hollow Ag/Ag2S/Ag3PO4 nanocomposites as highly efficient heterojunction photocatalysts for the removal of antibiotics under simulated sunlight irradiation. Chemosphere 274:129765. https://doi.org/10.1016/j.chemosphere.2021.129765
Ani IJ, Akpan UG, Olutoye MA, Hameed BH (2018) Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2- and ZnO-based photocatalysts: Recent development. J Clean pro 205:930–954. https://doi.org/10.1016/j.jclepro.2018.08.189
Anwer H, Park J-W (2018) Synthesis and characterization of a heterojunction rGO/ZrO2/Ag3PO4 nanocomposite for degradation of organic contaminants. J Hazard Mater 358:416–426. https://doi.org/10.1016/j.jhazmat.2018.07.019
Anwer H, Mahmood A, Lee J, Kim K-H, Park J-W, Yip ACK (2019) Photocatalysts for degradation of dyes in industrial effluents: Opportunities and challenges. Nano Res 12:955–972. https://doi.org/10.1007/s12274-019-2287-0
Barhoumi N, Oturan N, Ammar S, Gadri A, Oturan MA, Brillas E (2017) Enhanced degradation of the antibiotic tetracycline by heterogeneous electro-Fenton with pyrite catalysis. Environ Chem Lett 15:689–693. https://doi.org/10.1007/s10311-017-0638-y
Chen F, Yang Q, Sun J, Yao F, Wang S, Wang Y, Wang X, Li X, Niu C, Wang D, Zeng G (2016) Enhanced Photocatalytic Degradation of Tetracycline by AgI/BiVO4 Heterojunction under Visible-Light Irradiation: Mineralization Efficiency and Mechanism. ACS Appl Mater Interfaces 8:32887–32900. https://doi.org/10.1021/acsami.6b12278
Chen F, Yang Q, Yao F, Wang S, Sun J, An H, Yi K, Wang Y, Zhou Y, Wang L, Li X, Wang D, Zeng G (2017) Visible-light photocatalytic degradation of multiple antibiotics by AgI nanoparticle-sensitized Bi5O7I microspheres: Enhanced interfacial charge transfer based on Z-scheme heterojunctions. J Catal 352:160–170. https://doi.org/10.1016/j.jcat.2017.04.032
Chen F, Liu L-L, Zhang Y-J, Wu J-H, Huang G-X, Yang Q, Chen J-J, Yu H-Q (2020a) Enhanced full solar spectrum photocatalysis by nitrogen-doped graphene quantum dots decorated BiO2-x nanosheets: Ultrafast charge transfer and molecular oxygen activation. Appl Catal B: Environ. https://doi.org/10.1016/j.apcatb.2020.119218
Chen J, Zhang X, Shi X, Bi F, Yang Y, Wang Y (2020b) Synergistic effects of octahedral TiO2-MIL-101(Cr) with two heterojunctions for enhancing visible-light photocatalytic degradation of liquid tetracycline and gaseous toluene. J Coll Interface Sci 579:37–49. https://doi.org/10.1016/j.jcis.2020.06.042
Cortes MALRM, Hamilton JWJ, Sharma PK, Brown A, Nolan M, Gray KA, Byrne JA (2019) Formal quantum efficiencies for the photocatalytic reduction of CO2 in a gas phase batch reactor. Catal Today 326:75–81. https://doi.org/10.1016/j.cattod.2018.10.047
Daghrir R, Drogui P (2013) Tetracycline antibiotics in the environment: a review. Environ Chem Lett 11:209–227. https://doi.org/10.1007/s10311-013-0404-8
Dai W, Jiang L, Wang J, Pu Y, Zhu Y, Wang Y, Xiao B (2020) Efficient and stable photocatalytic degradation of tetracycline wastewater by 3D Polyaniline/Perylene diimide organic heterojunction under visible light irradiation. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125476
Di Bartolomeo A (2016) Graphene Schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction. Phys Rep 606:1–58. https://doi.org/10.1016/j.physrep.2015.10.003
Fan H, Zhou H, Li W, Gu S, Zhou G (2020) Facile fabrication of 2D/2D step-scheme In2S3/Bi2O2CO3 heterojunction towards enhanced photocatalytic activity. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2019.144351
Feng X, Yu Z, Sun Y, Shan M, Long R, Li X (2021) 3D MXene/Ag2S material as Schottky junction catalyst with stable and enhanced photocatalytic activity and photocorrosion resistance. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2021.118606
Fu J, Xu Q, Low J, Jiang C, Yu J (2019) Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B: Environ 243:556–565. https://doi.org/10.1016/j.apcatb.2018.11.011
Guo F, Shi W, Wang H, Han M, Guan W, Huang H, Liu Y, Kang Z (2018) Study on highly enhanced photocatalytic tetracycline degradation of type AgI/CuBi2O4 and Z-scheme AgBr/CuBi2O4 heterojunction photocatalysts. J Hazard Mater 349:111–118. https://doi.org/10.1016/j.jhazmat.2018.01.042
Guo F, Shi W, Li M, Shi Y, Wen H (2019a) 2D/2D Z-scheme heterojunction of CuInS2/g-C3N4 for enhanced visible-light-driven photocatalytic activity towards the degradation of tetracycline. Sep Purif Technol 210:608–615. https://doi.org/10.1016/j.seppur.2018.08.055
Guo F, Li M, Ren H, Huang X, Hou W, Wang C, Shi W, Lu C (2019b) Fabrication of p-n CuBi2O4/MoS2 heterojunction with nanosheets-on-microrods structure for enhanced photocatalytic activity towards tetracycline degradation. Appl Surf Sci 491:88–94. https://doi.org/10.1016/j.apsusc.2019.06.158
Guo P, Zhao F, Hu X (2021) Fabrication of a direct Z-scheme heterojunction between MoS2 and B/Eu-g-C3N4 for an enhanced photocatalytic performance toward tetracycline degradation. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2021.159044
Hasija V, Kumar A, Sudhaik A, Raizada P, Singh P, Van Le Q, Le TT, Nguyen V-H (2021) Step-scheme heterojunction photocatalysts for solar energy, water splitting, CO2 conversion, and bacterial inactivation: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-021-01231-w
He F, Lu Z, Song M, Liu X, Tang H, Huo P, Fan W, Dong H, Wu X, Han S (2019a) Selective reduction of Cu2+ with simultaneous degradation of tetracycline by the dual channels ion imprinted POPD-CoFe2O4 heterojunction photocatalyst. Chem Eng J 360:750–761. https://doi.org/10.1016/j.cej.2018.12.034
He F, Wang S, Zhao H, Wang Y, Zhang J, Yan Q, Dong P, Tai Z, Chen L, Wang Y, Zhao C (2019b) Construction of Schottky-type Ag-loaded fiber-like carbon nitride photocatalysts for tetracycline elimination and hydrogen evolution. Appl Surf Sci 485:70–80. https://doi.org/10.1016/j.apsusc.2019.04.164
He F, Meng A, Cheng B, Ho W, Yu J (2020a) Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. Chinese J Catal 41:9–20. https://doi.org/10.1016/s1872-2067(19)63382-6
He X, Wang A, Wu P, Tang S, Zhang Y, Li L, Ding P (2020b) Photocatalytic degradation of microcystin-LR by modified TiO2 photocatalysis: A review. Sci Total Environ 743:140694. https://doi.org/10.1016/j.scitotenv.2020.140694
He M, Sun K, Suryawanshi MP, Li J, Hao X (2021a) Interface engineering of p-n heterojunction for kesterite photovoltaics: A progress review. J Energy Chem 60:1–8. https://doi.org/10.1016/j.jechem.2020.12.019
He X, Wu P, Wang S, Wang A, Wang C, Ding P (2021b) Inactivation of harmful algae using photocatalysts: Mechanisms and performance. J Clean pro. https://doi.org/10.1016/j.jclepro.2020.125755
Heidari S, Haghighi M, Shabani M (2020) Sono-photodeposition of Ag over sono-fabricated mesoporous Bi2Sn2O7-two dimensional carbon nitride: Type-II plasmonic nano-heterojunction with simulated sunlight-driven elimination of drug. Chem Eng J. https://doi.org/10.1016/j.cej.2019.123418
Huang H, Liu C, Ou H, Ma T, Zhang Y (2019) Self-sacrifice transformation for fabrication of type-I and type-II heterojunctions in hierarchical BixOyIz/g-C3N4 for efficient visible-light photocatalysis. Appl Surf Sci 470:1101–1110. https://doi.org/10.1016/j.apsusc.2018.11.193
Ifebajo AO, Oladipo AA, Gazi M (2018) Efficient removal of tetracycline by CoO/CuFe2O4 derived from layered double hydroxides. Environ Chem Lett 17:487–494. https://doi.org/10.1007/s10311-018-0781-0
Jia X, Han Q, Liu H, Li S, Bi H (2020) A dual strategy to construct flowerlike S-scheme BiOBr/BiOAc1−Br heterojunction with enhanced visible-light photocatalytic activity. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125701
Jiang W, Luo W, Zong R, Yao W, Li Z, Zhu Y (2016) Polyaniline/carbon nitride nanosheets composite hydrogel: A separation-free and high-efficient photocatalyst with 3D hierarchical structure. Small 12:4370–4378. https://doi.org/10.1002/smll.201601546
Jiang D, Wang T, Xu Q, Li D, Meng S, Chen M (2017) Perovskite oxide ultrathin nanosheets/g-C3N4 2D–2D heterojunction photocatalysts with significantly enhanced photocatalytic activity towards the photodegradation of tetracycline. Appl Catal B: Environ 201:617–628. https://doi.org/10.1016/j.apcatb.2016.09.001
Jiang E, Liu X, Che H, Liu C, Dong H, Che G (2018) Visible-light-driven Ag/Bi3O4Cl nanocomposite photocatalyst with enhanced photocatalytic activity for degradation of tetracycline. RSC Adv 8:37200–37207. https://doi.org/10.1039/c8ra07482h
Jin P, Wang L, Ma X, Lian R, Huang J, She H, Zhang M, Wang Q (2021) Construction of hierarchical ZnIn2S4@PCN-224 heterojunction for boosting photocatalytic performance in hydrogen production and degradation of tetracycline hydrochloride. Appl Catal B: Environ. https://doi.org/10.1016/j.apcatb.2020.119762
Jo WK, Tonda S (2019) Novel CoAl-LDH/g-C3N4/RGO ternary heterojunction with notable 2D/2D/2D configuration for highly efficient visible-light-induced photocatalytic elimination of dye and antibiotic pollutants. J Hazard Mater 368:778–787. https://doi.org/10.1016/j.jhazmat.2019.01.114
Kumar L, Ragunathan V, Chugh M, Bharadvaja N (2021) Nanomaterials for remediation of contaminants: a review. Environ Chem Lettdoi. https://doi.org/10.1007/s10311-021-01212-z
Lai C, Xu F, Zhang M, Li B, Liu S, Yi H, Li L, Qin L, Liu X, Fu Y, An N, Yang H, Huo X, Yang X, Yan H (2021) Facile synthesis of CeO2/carbonate doped Bi2O2CO3 Z-scheme heterojunction for improved visible-light photocatalytic performance: Photodegradation of tetracycline and photocatalytic mechanism. J Coll Interface Sci 588:283–294. https://doi.org/10.1016/j.jcis.2020.12.073
Lu LL, Wu BY, Shi W, Cheng P (2019) Metal–organic framework-derived heterojunctions as nanocatalysts for photocatalytic hydrogen production. Inorg Chem Front 6:3456–3467. https://doi.org/10.1039/c9qi00964g
Li Q, Li FT (2020) Recent advances in surface and interface design of photocatalysts for the degradation of volatile organic compounds. Adv Coll Interface Sci 284:102275. https://doi.org/10.1016/j.cis.2020.102275
Li S, Hu S, Xu K, Jiang W, Liu Y, Leng Z, Liu J (2017) Construction of fiber-shaped silver oxide/tantalum nitride p-n heterojunctions as highly efficient visible-light-driven photocatalysts. J Coll Interface Sci 504:561–569. https://doi.org/10.1016/j.jcis.2017.06.018
Li C, Yu S, Che H, Zhang X, Han J, Mao Y, Wang Y, Liu C, Dong H (2018) Fabrication of Z-Scheme Heterojunction by Anchoring Mesoporous γ-Fe2O3 Nanospheres on g-C3N4 for Degrading Tetracycline Hydrochloride in Water. ACS Sustain Chem Eng 6:16437–16447. https://doi.org/10.1021/acssuschemeng.8b03500
Li S, Chen J, Liu Y, Xu K, Liu J (2019) In situ anion exchange strategy to construct flower-like BiOCl/BiOCOOH p-n heterojunctions for efficiently photocatalytic removal of aqueous toxic pollutants under solar irradiation. J Alloys Compd 781:582–588. https://doi.org/10.1016/j.jallcom.2018.12.114
Li S, Han Q, Jia X, Hannan Zahid A, Bi H (2020a) Room-temperature one-step synthesis of tube-like S-scheme BiOBr/BiO(HCOO)Br-x heterojunction with excellent visible-light photocatalytic performance. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2020.147208
Li S, Chen J, Hu S, Wang H, Jiang W, Chen X (2020b) Facile construction of novel Bi2WO6/Ta3N5 Z-scheme heterojunction nanofibers for efficient degradation of harmful pharmaceutical pollutants. Chem Eng J. https://doi.org/10.1016/j.cej.2020.126165
Li S, Shao L, Yang Z, Cheng S, Yang C, Liu Y, Xia X (2020c) Constructing Ti3C2 MXene/ZnIn2S4 heterostructure as a Schottky Catalyst for photocatalytic environmental remediation. Green Energy Environ. https://doi.org/10.1016/j.gee.2020.09.005
Li X, Xiong J, Gao X, Ma J, Chen Z, Kang B, Liu J, Li H, Feng Z, Huang J (2020d) Novel BP/BiOBr S-scheme nano-heterojunction for enhanced visible-light photocatalytic tetracycline removal and oxygen evolution activity. J Hazard Mater 387:121690. https://doi.org/10.1016/j.jhazmat.2019.121690
Li S, Xue B, Chen J, Liu Y, Zhang J, Wang H, Liu J (2021a) Constructing a plasmonic p-n heterojunction photocatalyst of 3D Ag/Ag6Si2O7/Bi2MoO6 for efficiently removing broad-spectrum antibiotics. Sep Purif Technol 254:117579. https://doi.org/10.1016/j.seppur.2020.117579
Li X, Kang B, Dong F, Zhang Z, Luo X, Han L, Huang J, Feng Z, Chen Z, Xu J, Peng B, Wang ZL (2021b) Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO272 S-scheme heterojunction with appropriate surface oxygen vacancies. Nano Energy 81:105671
Liao X, Li T-T, Ren H-T, Mao Z, Zhang X, Lin J-H, Lou C-W (2020) Enhanced photocatalytic performance through the ferroelectric synergistic effect of p-n heterojunction BiFeO3/TiO2 under visible-light irradiation. Ceram Int. https://doi.org/10.1016/j.ceramint.2020.12.195
Liu Q, Wang J (2019) Dye-sensitized solar cells based on surficial TiO2 modification. Sol Energy 184:454–465. https://doi.org/10.1016/j.solener.2019.04.032
Liu Y, Kong J, Yuan J, Zhao W, Zhu X, Sun C, Xie J (2018) Enhanced photocatalytic activity over flower-like sphere Ag/Ag2CO3/BiVO4 plasmonic heterojunction photocatalyst for tetracycline degradation. Chem Eng J 331:242–254. https://doi.org/10.1016/j.cej.2017.08.114
Liu D, Li B, Wu J, Liu Y (2019a) Photocatalytic oxidation removal of elemental mercury from flue gas. Rev Environ Chem Lett 18:417–431. https://doi.org/10.1007/s10311-019-00957-y
Liu F, Nguyen T-P, Wang Q, Massuyeau F, Dan Y, Jiang L (2019b) Construction of Z-scheme g-C3N4/Ag/P3HT heterojunction for enhanced visible-light photocatalytic degradation of tetracycline (TC) and methyl orange (MO). Appl Surf Sci 496:143653. https://doi.org/10.1016/j.apsusc.2019.143653
Liu Y, Tian J, Wei L, Wang Q, Wang C, Xing Z, Li X, Yang W, Yang C (2021) Modified g-C3N4/TiO2/CdS ternary heterojunction nanocomposite as highly visible light active photocatalyst originated from CdS as the electron source of TiO2 to accelerate Z-type heterojunction. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2020.117976
López YC, Viltres H, Gupta NK, Acevedo-Peña P, Leyva C, Ghaffari Y, Gupta A, Kim S, Bae J, Kim KS (2021) Transition metal-based metal–organic frameworks for environmental applications: a review. Environ Chem Lett 19:1295–1334. https://doi.org/10.1007/s10311-020-01119-1
Louangsouphom B, Wang X, Song J, Wang X (2018) Low-temperature preparation of a N-TiO2/macroporous resin photocatalyst to degrade organic pollutants. Environ Chem Lett 17:1061–1066. https://doi.org/10.1007/s10311-018-00827-z
Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA (2017) Heterojunction Photocatalysts. Adv Mater. https://doi.org/10.1002/adma.201601694
Low J, Dai B, Tong T, Jiang C, Yu J (2019) In Situ irradiated X-Ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Adv Mater. https://doi.org/10.1002/adma.201802981
Lu C, Guo F, Yan Q, Zhang Z, Li D, Wang L, Zhou Y (2019a) Hydrothermal synthesis of type II ZnIn2S4/BiPO4 heterojunction photocatalyst with dandelion-like microflower structure for enhanced photocatalytic degradation of tetracycline under simulated solar light. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2019.151976
Lu Z, Peng J, Song M, Liu Y, Liu X, Huo P, Dong H, Yuan S, Ma Z, Han S (2019b) Improved recyclability and selectivity of environment-friendly MFA-based heterojunction imprinted photocatalyst for secondary pollution free tetracycline orientation degradation. Chem Eng J 360:1262–1276. https://doi.org/10.1016/j.cej.2018.10.200
Luo B, Xu D, Li D, Wu G, Wu M, Shi W, Chen M (2015) Fabrication of a Ag/Bi3TaO7 Plasmonic Photocatalyst with Enhanced Photocatalytic Activity for Degradation of Tetracycline. ACS Appl Mater Interfaces 7:17061–17069. https://doi.org/10.1021/acsami.5b03535
Lv S-W, Liu J-M, Yang F-E, Li C-Y, Wang S (2021) A novel photocatalytic platform based on the newly-constructed ternary composites with a double p-n heterojunction for contaminants degradation and bacteria inactivation. Chem Eng J. https://doi.org/10.1016/j.cej.2020.128269
Ma Z, Hu L, Li X, Deng L, Fan G, He Y (2019) A novel nano-sized MoS2 decorated Bi2O3 heterojunction with enhanced photocatalytic performance for methylene blue and tetracycline degradation. Ceram Int 45:15824–15833. https://doi.org/10.1016/j.ceramint.2019.05.085
Madhura L, Singh S, Kanchi S, Sabela M, Bisetty K, Inamuddin, (2018) Nanotechnology-based water quality management for wastewater treatment. Environ Chem Lett 17:65–121. https://doi.org/10.1007/s10311-018-0778-8
Mahamallik P, Saha S, Pal A (2015) Tetracycline degradation in aquatic environment by highly porous MnO2 nanosheet assembly. Chem Eng J 276:155–165. https://doi.org/10.1016/j.cej.2015.04.064
Marschall R (2014) Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity. Adv Funct Mater 24:2421–2440. https://doi.org/10.1002/adfm.201303214
Motlagh HF, Haghighi M, Shabani M (2019) Sono-solvothermal fabrication of ball-flowerlike Bi2O7Sn2-Bi7O9I3 nanophotocatalyst with efficient solar-light-driven activity for degradation of antibiotic tetracycline. Sol Energy 180:25–38. https://doi.org/10.1016/j.solener.2019.01.021
Nemiwal M, Zhang TC, Kumar D (2021) Recent progress in g-C3N4, TiO2 and ZnO based photocatalysts for dye degradation: Strategies to improve photocatalytic activity. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144896
Ni J, Wang W, Liu D, Zhu Q, Jia J, Tian J, Li Z, Wang X, Xing Z (2020) Oxygen vacancy-mediated sandwich-structural TiO2-x /ultrathin g-C3N4/TiO2-x direct Z-scheme heterojunction visible-light-driven photocatalyst for efficient removal of high toxic tetracycline antibiotics. J Hazard Mater. https://doi.org/10.1016/j.jhazmat.2020.124432
Obregón S, Ruíz-Gómez MA, Rodríguez-González V, Vázquez A, Hernández-Uresti DB (2020) A novel type-II Bi2W2O9/g-C3N4 heterojunction with enhanced photocatalytic performance under simulated solar irradiation. Mater Sci Semicond Process 113:105056. https://doi.org/10.1016/j.mssp.2020.105056
Palanivel B, Shkir M, Alshahrani T, Mani A (2021) Novel NiFe2O4 deposited S-doped g-C3N4 nanorod: Visible-light-driven heterojunction for photo-Fenton like tetracycline degradation. Diamond Relat Mater. https://doi.org/10.1016/j.diamond.2020.108148
Pan T, Chen D, Xu W, Fang J, Wu S, Liu Z, Wu K, Fang Z (2020) Anionic polyacrylamide-assisted construction of thin 2D–2D WO3/g-C3N4 Step-scheme heterojunction for enhanced tetracycline degradation under visible light irradiation. J Hazard Mater 393:122366. https://doi.org/10.1016/j.jhazmat.2020.122366
Pei C-Y, Chen Y-G, Wang L, Chen W, Huang G-B (2021) Step-scheme WO3/CdIn2S4 hybrid system with high visible light activity for tetracycline hydrochloride photodegradation. Appl Surf Sci. https://doi.org/10.1016/j.apsusc.2020.147682
Peng X, Luo W, Wu J, Hu F, Hu Y, Xu L, Xu G, Jian Y, Dai H (2021) Carbon quantum dots decorated heteroatom co-doped core-shell Fe(0)@POCN for degradation of tetracycline via multiply synergistic mechanisms. Chemosphere 268:128806. https://doi.org/10.1016/j.chemosphere.2020.128806
Qi K, Cheng B, Yu J, Ho W (2017) A review on TiO2-based Z-scheme photocatalysts. Chinese J Catal 38:1936–1955. https://doi.org/10.1016/S1872-2067(17)62962-0
Rajput H, Kwon EE, Younis SA, Weon S, Jeon TH, Choi W, Kim K-H (2021) Photoelectrocatalysis as a high-efficiency platform for pulping wastewater treatment and energy production. Chem Eng J 412:128612. https://doi.org/10.1016/j.cej.2021.128612
Raza N, Raza W, Gul H, Azam M, Lee J, Vikrant K, Kim K-H (2020) Solar-light-active silver phosphate/titanium dioxide/silica heterostructures for photocatalytic removal of organic dye. J Clean pro. https://doi.org/10.1016/j.jclepro.2020.120031
Raza N, Raza W, Gul H, Kim KH (2021) ZnO-ZnTe hierarchical superstructures as solar-light-activated photocatalysts for azo dye removal. Environ Res 194:110499. https://doi.org/10.1016/j.envres.2020.110499
Ren L, Zhou W, Sun B, Li H, Qiao P, Xu Y, Wu J, Lin K, Fu H (2019) Defects-engineering of magnetic γ-Fe2O3 ultrathin nanosheets/mesoporous black TiO2 hollow sphere heterojunctions for efficient charge separation and the solar-driven photocatalytic mechanism of tetracycline degradation. Appl Catal B: Environ 240:319–328. https://doi.org/10.1016/j.apcatb.2018.08.033
Sajan CP, Wageh S, Al-Ghamdi AA, Yu J, Cao S (2016) TiO2nanosheets with exposed 001 facets for photocatalytic applications. Nano Res 9:3–27. https://doi.org/10.1007/s12274-015-0919-3
Saravanan A, Kumar PS, Vo D-VN, Yaashikaa PR, Karishma S, Jeevanantham S, Gayathri B, Bharathi VD (2020) Photocatalysis for removal of environmental pollutants and fuel production: a review. Environ Chem Lett 19:441–463. https://doi.org/10.1007/s10311-020-01077-8
Shi W, Guo F, Yuan S (2017) In situ synthesis of Z-scheme Ag 3 PO 4 /CuBi 2 O 4 photocatalysts and enhanced photocatalytic performance for the degradation of tetracycline under visible light irradiation. Appl Catal B: Environ 209:720–728. https://doi.org/10.1016/j.apcatb.2017.03.048
Shi H, Ni J, Zheng T, Wang X, Wu C, Wang Q (2019) Remediation of wastewater contaminated by antibiotics. Rev Environ Chem Lett 18:345–360. https://doi.org/10.1007/s10311-019-00945-2
Shi Y, Li J, Wan D, Huang J, Liu Y (2020a) Peroxymonosulfate-enhanced photocatalysis by carbonyl-modified g-C3N4 for effective degradation of the tetracycline hydrochloride. Sci Total Environ 749:142313. https://doi.org/10.1016/j.scitotenv.2020.142313
Shi Y, Yan Z, Xu Y, Tian T, Zhang J, Pang J, Peng X, Zhang Q, Shao M, Tan W, Li H, Xiong Q (2020b) Visible-light-driven AgBr–TiO2-Palygorskite photocatalyst with excellent photocatalytic activity for tetracycline hydrochloride. J Clean pro. https://doi.org/10.1016/j.jclepro.2020.124021
Shi Z, Zhang Y, Shen X, Duoerkun G, Zhu B, Zhang L, Li M, Chen Z (2020c) Fabrication of g-C3N4/BiOBr heterojunctions on carbon fibers as weaveable photocatalyst for degrading tetracycline hydrochloride under visible light. Chem Eng J. https://doi.org/10.1016/j.cej.2020.124010
Soltani T, Tayyebi A, Lee BK (2019) Photolysis and photocatalysis of tetracycline by sonochemically heterojunctioned BiVO4/reduced graphene oxide under visible-light irradiation. J Environ Manag 232:713–721. https://doi.org/10.1016/j.jenvman.2018.11.133
Soni V, Raizada P, Kumar A, Hasija V, Singal S, Singh P, Hosseini-Bandegharaei A, Thakur VK, Nguyen V-H (2021) Indium sulfide-based photocatalysts for hydrogen production and water cleaning: a review. Environ Chem Lett 19:1065–1095. https://doi.org/10.1007/s10311-020-01148-w
Talaiekhozani A, Rezania S, Kim K-H, Sanaye R, Amani AM (2021) Recent advances in photocatalytic removal of organic and inorganic pollutants in air. J Clean pro 278:123895. https://doi.org/10.1016/j.jclepro.2020.123895
Nguyen TD, Nguyen VH, Nanda S, Vo DVN, Nguyen VH, Tran TV, Nong LX, Nguyen TT, Bach LG, Abdullah B, Hong SS, Nguyen TV (2020) BiVO4 photocatalysis design and applications to oxygen production and degradation of organic compounds: a review. Environ Chem Lett 18:1779–1801. https://doi.org/10.1007/s10311-020-01039-0
Vellingiri K, Vikrant K, Kumar V, Kim K-H (2020) Advances in thermocatalytic and photocatalytic techniques for the room/low temperature oxidative removal of formaldehyde in air. Chem Eng J. https://doi.org/10.1016/j.cej.2020.125759
Vikrant K, Park CM, Kim K-H, Kumar S, Jeon E-C (2019) Recent advancements in photocatalyst-based platforms for the destruction of gaseous benzene: Performance evaluation of different modes of photocatalytic operations and against adsorption techniques. J Photoch Photobio C. https://doi.org/10.1016/j.jphotochemrev.2019.08.003
Vikrant K, Kim K-H, Dong F, Giannakoudakis DA (2020) Photocatalytic Platforms for Removal of Ammonia from Gaseous and Aqueous Matrixes: Status and Challenges. ACS Catal 10:8683–8716. https://doi.org/10.1021/acscatal.0c02163
Wan J, Xue P, Wang R, Liu L, Liu E, Bai X, Fan J, Hu X (2019) Synergistic effects in simultaneous photocatalytic removal of Cr(VI) and tetracycline hydrochloride by Z-scheme Co3O4/Ag/Bi2WO6 heterojunction. Appl Surf Sci 483:677–687. https://doi.org/10.1016/j.apsusc.2019.03.246
Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X (2014) Semiconductor heterojunction photocatalysts: design, construction, and photocatalytic performances. Chem Soc Rev 43:5234–5244. https://doi.org/10.1039/c4cs00126e
Wang H, Yuan X, Wu Y, Zeng G, Dong H, Chen X, Leng L, Wu Z, Peng L (2016) In situ synthesis of In2S3@MIL-125(Ti) core–shell microparticle for the removal of tetracycline from wastewater by integrated adsorption and visible-light-driven photocatalysis. Appl Catal B: Environ 186:19–29. https://doi.org/10.1016/j.apcatb.2015.12.041
Wang J, Zhang G, Li J, Wang K (2018a) Novel Three-Dimensional Flowerlike BiOBr/Bi2SiO5 p–n Heterostructured Nanocomposite for Degradation of Tetracycline: Enhanced Visible Light Photocatalytic Activity and Mechanism. ACS Sustain Chem Eng 6:14221–14229. https://doi.org/10.1021/acssuschemeng.8b02869
Wang J, Zhi D, Zhou H, He X, Zhang D (2018b) Evaluating tetracycline degradation pathway and intermediate toxicity during the electrochemical oxidation over a Ti/Ti4O7 anode. Water Res 137:324–334. https://doi.org/10.1016/j.watres.2018.03.030
Wang J, Zhang Z, Wang X, Shen Y, Guo Y, Wong PK, Bai R (2018c) Synthesis of novel p-n heterojunction m-Bi2O4/BiOCl nanocomposite with excellent photocatalytic activity through ion-etching method. Chinese J Catal 39:1792–1803. https://doi.org/10.1016/s1872-2067(18)63142-0
Wang W, Han Q, Zhu Z, Zhang L, Zhong S, Liu B (2019) Enhanced photocatalytic degradation performance of organic contaminants by heterojunction photocatalyst BiVO4/TiO2/RGO and its compatibility on four different tetracycline antibiotics. Adv Powder Technol 30:1882–1896. https://doi.org/10.1016/j.apt.2019.06.006
Wang J, Zhang Q, Deng F, Luo X, Dionysiou DD (2020) Rapid toxicity elimination of organic pollutants by the photocatalysis of environment-friendly and magnetically recoverable step-scheme SnFe2O4/ZnFe2O4 nano-heterojunctions. Chem Eng J. https://doi.org/10.1016/j.cej.2019.122264
Wang H, Chen L, Sun Y, Yu J, Zhao Y, Zhan X, Shi H (2021a) Ti3C2 Mxene modified SnNb2O6 nanosheets Schottky photocatalysts with directed internal electric field for tetracycline hydrochloride removal and hydrogen evolution. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2021.118516
Wang S, Zhao L, Huang W, Zhao H, Chen J, Cai Q, Jiang X, Lu C, Shi W (2021b) Solvothermal synthesis of CoO/BiVO4 p-n heterojunction with micro-nano spherical structure for enhanced visible light photocatalytic activity towards degradation of tetracycline. Mater Res Bull. https://doi.org/10.1016/j.materresbull.2020.111161
Wei Z, Xinyue T, Xiaomeng W, Benlin D, Lili Z, Jiming X, Yue F, Ni S, Fengxia Z (2019) Novel p-n heterojunction photocatalyst fabricated by flower-like BiVO4 and Ag2S nanoparticles: Simple synthesis and excellent photocatalytic performance. Chem Eng J 361:1173–1181. https://doi.org/10.1016/j.cej.2018.12.120
Wei Z, Liu J, Shangguan W (2020) A review on photocatalysis in antibiotic wastewater: Pollutant degradation and hydrogen production. Chinese J Catal 41:1440–1450. https://doi.org/10.1016/s1872-2067(19)63448-0
Wu Z, Yan X, Shen H, Li J, Shi W (2018) Enhanced visible-light-driven photocatalytic activity of Bi12O15Cl6/Bi2WO6 Z-scheme heterojunction photocatalysts for tetracycline degradation. Mater Sci Eng B 231:86–92. https://doi.org/10.1016/j.mseb.2018.10.003
Wu X-F, Li H, Su J-Z, Zhang J-R, Feng Y-M, Jia Y-N, Sun L-S, Zhang W-G, Zhang M, Zhang C-Y (2019) Full spectrum responsive In2.77S4/WS2 p-n heterojunction as an efficient photocatalyst for Cr(VI) reduction and tetracycline oxidation. Appl Surf Sci 473:992–1001. https://doi.org/10.1016/j.apsusc.2018.12.219
Xia B, Deng F, Zhang S, Hua L, Luo X, Ao M (2020) Design and synthesis of robust Z-scheme ZnS-SnS2 n-n heterojunctions for highly efficient degradation of pharmaceutical pollutants: Performance, valence/conduction band offset photocatalytic mechanisms and toxicity evaluation. J Hazard Mater 392:122345. https://doi.org/10.1016/j.jhazmat.2020.122345
Xie Z, Feng Y, Wang F, Chen D, Zhang Q, Zeng Y, Lv W, Liu G (2018) Construction of carbon dots modified MoO3/g-C3N4 Z-scheme photocatalyst with enhanced visible-light photocatalytic activity for the degradation of tetracycline. Appl Catal B: Environ 229:96–104. https://doi.org/10.1016/j.apcatb.2018.02.011
Xu C, Ravi Anusuyadevi P, Aymonier C, Luque R, Marre S (2019) Nanostructured materials for photocatalysis. Chem Soc Rev 48:3868–3902. https://doi.org/10.1039/c9cs00102f
Xu Q, Zhang L, Cheng B, Fan J, Yu J (2020a) S-Scheme Heterojunction Photocatalyst Chem 6:1543–1559. https://doi.org/10.1016/j.chempr.2020.06.010
Xu Y, You Y, Huang H, Guo Y, Zhang Y (2020b) Bi4NbO8Cl {001} nanosheets coupled with g-C3N4 as 2D/2D heterojunction for photocatalytic degradation and CO2 reduction. J Hazard Mater 381:121159. https://doi.org/10.1016/j.jhazmat.2019.121159
Xue J, Ma S, Zhou Y, Zhang Z, He M (2015) Facile Photochemical Synthesis of Au/Pt/g-C3N4 with Plasmon-Enhanced Photocatalytic Activity for Antibiotic Degradation. ACS Appl Mater Interfaces 7:9630–9637. https://doi.org/10.1021/acsami.5b01212
Yan X, Qin J, Ning G, Li J, Ai T, Su X, Wang Z (2019) A novel poly(triazine imide) hollow tube/ZnO heterojunction for tetracycline hydrochloride degradation under visible light irradiation. Adv Powder Technol 30:359–365. https://doi.org/10.1016/j.apt.2018.11.013
Yan Q, Fu Y, Zhang Y, Wang H, Wang S, Cui W (2021a) Ag/γ-AgI/Bi2O2CO3/Bi S-scheme heterojunction with enhanced photocatalyst performance. Sep Purif Technol 263:118389. https://doi.org/10.1016/j.seppur.2021.118389
Yan X, Ji Q, Wang C, Xu J, Wang L (2021b) In situ construction bismuth oxycarbonate/bismuth oxybromide Z-scheme heterojunction for efficient photocatalytic removal of tetracycline and ciprofloxacin. J Colloid Interface Sci 587:820–830. https://doi.org/10.1016/j.jcis.2020.11.043
Yang Y, Zeng Z, Zhang C, Huang D, Zeng G, Xiao R, Lai C, Zhou C, Guo H, Xue W, Cheng M, Wang W, Wang J (2018) Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: Transformation pathways and mechanism insight. Chem Eng J 349:808–821. https://doi.org/10.1016/j.cej.2018.05.093
Yang R, Zhu Z, Hu C, Zhong S, Zhang L, Liu B, Wang W (2020) One-step preparation (3D/2D/2D) BiVO4/FeVO4@rGO heterojunction composite photocatalyst for the removal of tetracycline and hexavalent chromium ions in water. Chem Eng J. https://doi.org/10.1016/j.cej.2020.124522
Yang P, Chen C, Wang D, Ma H, Du Y, Cai D, Zhang X, Wu Z (2021a) Kinetics, reaction pathways, and mechanism investigation for improved environmental remediation by 0D/3D CdTe/Bi2WO6 Z-scheme catalyst. Appl Catal B: Environ. https://doi.org/10.1016/j.apcatb.2021.119877
Yang X, Chen Z, Zhao W, Liu C, Qian X, Chang W, Sun T, Shen C, Wei G (2021b) Construction of porous-hydrangea BiOBr/BiOI n-n heterojunction with enhanced photodegradation of tetracycline hydrochloride under visible light. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2021.158784
Yang X, Chen Z, Zhao W, Liu C, Qian X, Zhang M, Wei G, Khan E, Hau Ng Y, Sik Ok Y (2021c) Recent advances in photodegradation of antibiotic residues in water. Chem Eng J 405:126806. https://doi.org/10.1016/j.cej.2020.126806
Yin H, Cao Y, Fan T, Zhang M, Yao J, Li P, Chen S, Liu X (2021) In situ synthesis of Ag3PO4/C3N5Z-scheme heterojunctions with enhanced visible-light-responsive photocatalytic performance for antibiotics removal. Sci Total Environ 754:141926. https://doi.org/10.1016/j.scitotenv.2020.141926
Younis SA, Kwon EE, Qasim M, Kim K-H, Kim T, Kukkar D, Dou X, Ali I (2020) Metal-organic framework as a photocatalyst: Progress in modulation strategies and environmental/energy applications. Prog Energy Combust Sci. https://doi.org/10.1016/j.pecs.2020.100870
Yu C, Zhou W, Yu JC, Liu H, Wei L (2014a) Design and fabrication of heterojunction photocatalysts for energy conversion and pollutant degradation. Chinese J Catal 35:1609–1618. https://doi.org/10.1016/s1872-2067(14)60170-4
Yu J, Low J, Xiao W, Zhou P, Jaroniec M (2014b) Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J Am Chem Soc 136:8839–8842. https://doi.org/10.1021/ja5044787
Yu W, Zhang S, Chen J, Xia P, Richter MH, Chen L, Xu W, Jin J, Chen S, Peng T (2018) Biomimetic Z-scheme photocatalyst with a tandem solid-state electron flow catalyzing H2 evolution. J Mater Chem A 6:15668–15674. https://doi.org/10.1039/c8ta02922a
Yu H, Wang D, Zhao B, Lu Y, Wang X, Zhu S, Qin W, Huo M (2020) Enhanced photocatalytic degradation of tetracycline under visible light by using a ternary photocatalyst of Ag3PO4/AgBr/g-C3N4 with dual Z-scheme heterojunction. Sep Purif Technol. https://doi.org/10.1016/j.seppur.2019.116365
Yuan X, Shen D, Zhang Q, Zou H, Liu Z, Peng F (2019a) Z-scheme Bi2WO6/CuBi2O4 heterojunction mediated by interfacial electric field for efficient visible-light photocatalytic degradation of tetracycline. Chem Eng J 369:292–301. https://doi.org/10.1016/j.cej.2019.03.082
Yuan X, Jiang L, Liang J, Pan Y, Zhang J, Wang H, Leng L, Wu Z, Guan R, Zeng G (2019b) In-situ synthesis of 3D microsphere-like In2S3/InVO4 heterojunction with efficient photocatalytic activity for tetracycline degradation under visible light irradiation. Chem Eng J 356:371–381. https://doi.org/10.1016/j.cej.2018.09.079
Zhang M, Lai C, Li B, Huang D, Zeng G, Xu P, Qin L, Liu S, Liu X, Yi H, Li M, Chu C, Chen Z (2019) Rational design 2D/2D BiOBr/CDs/g-C3N4 Z-scheme heterojunction photocatalyst with carbon dots as solid-state electron mediators for enhanced visible and NIR photocatalytic activity: Kinetics, intermediates, and mechanism insight. J Catal 369:469–481. https://doi.org/10.1016/j.jcat.2018.11.029
Zhang R, Li Y, Zhang W, Sheng Y, Wang M, Liu J, Liu Y, Zhao C, Zeng K (2021) Fabrication of Cu2O/Bi2S3 heterojunction photocatalysts with enhanced visible light photocatalytic mechanism and degradation pathways of tetracycline. J Mol Struct. https://doi.org/10.1016/j.molstruc.2020.129581
Zhao C, Ran F, Dai L, Li C, Zheng C, Si C (2021a) Cellulose-assisted construction of high surface area Z-scheme C-doped g-C3N4/WO3 for improved tetracycline degradation. Carbohydr Polym 255:117343. https://doi.org/10.1016/j.carbpol.2020.117343
Zhao W, Li Y, Zhao P, Zhang L, Dai B, Xu J, Huang H, He Y, Leung DYC (2021b) Novel Z-scheme Ag-C3N4/SnS2 plasmonic heterojunction photocatalyst for degradation of tetracycline and H2 production. Chem Eng J. https://doi.org/10.1016/j.cej.2020.126555
Zheng X, Liu Y, Liu X, Li Q, Zheng Y (2021) A novel PVDF-TiO2@g-C3N4 composite electrospun fiber for efficient photocatalytic degradation of tetracycline under visible light irradiation. Ecotoxicol Environ Saf 210:111866. https://doi.org/10.1016/j.ecoenv.2020.111866
Zhi L, Zhang S, Xu Y, Tu J, Li M, Hu D, Liu J (2020) Controlled growth of AgI nanoparticles on hollow WO3 hierarchical structures to act as Z-scheme photocatalyst for visible-light photocatalysis. J Coll Interface Sci 579:754–765. https://doi.org/10.1016/j.jcis.2020.06.126
Zhou K, Li Y (2012) Catalysis Based on Nanocrystals with Well-Defined Facets. Angew Chem Int Ed 51:602–613. https://doi.org/10.1002/anie.201102619
Zhou H, Qu Y, Zeid T, Duan X (2012) Towards highly efficient photocatalysts using semiconductor nanoarchitectures. Energy Environ Sci. https://doi.org/10.1039/c2ee03447f
Zhou H, Zhong S, Shen M, Yao Y (2019) Composite soft template-assisted construction of a flower-like β-Bi2O3/Bi2O2CO3 heterojunction photocatalyst for the enhanced simulated sunlight photocatalytic degradation of tetracycline. Ceram Int 45:15036–15047. https://doi.org/10.1016/j.ceramint.2019.04.240
Zhu P, Duan M, Wang R, Xu J, Zou P, Jia H (2020) Facile synthesis of ZnO/GO/Ag3PO4 heterojunction photocatalyst with excellent photodegradation activity for tetracycline hydrochloride under visible light. Colloid Surface A. https://doi.org/10.1016/j.colsurfa.2020.125118
Zhuge Z, Liu X, Chen T, Gong Y, Li C, Niu L, Xu S, Xu X, Alothman ZA, Sun CQ, Shapter JG, Yamauchi Y (2020) Highly efficient photocatalytic degradation of different hazardous contaminants by CaIn2S4-Ti3C2Tx Schottky heterojunction: An experimental and mechanism study. Chem Eng J 421:127838. https://doi.org/10.1016/j.cej.2020.127838