Correlation-based ECG Artifact Correction from Single Channel EEG using Modified Variational Mode Decomposition
Tài liệu tham khảo
Dirlich, 1997, Cardiac field effects on the EEG, Electroencephalography Clin. Neurophysiol., 102, 307, 10.1016/S0013-4694(96)96506-2
Zhou, 2002, Removal of ecg artifacts from eeg using ica, 1, 206
Devuyst, 2008, Cancelling ECG artifacts in EEG using a modified independent component analysis approach, EURASIP J, Adv. Signal Process., 1
Hamaneh, 2014, Automated removal of EKG artifact from EEG data using independent component analysis and continuous wavelet transformation, IEEE Trans. Biomed. Eng., 61, 1634, 10.1109/TBME.2013.2295173
Chen, 2016, Removing muscle artifacts from EEG data: Multichannel or single-channel techniques?, IEEE Sensors J., 16, 1986, 10.1109/JSEN.2015.2506982
Camacho, 2016, Real-time single channel EEG motor imagery based brain computer interface, 1
Park, 2002, Automated detection and elimination of periodic ecg artifacts in eeg using the energy interval histogram method, IEEE Trans. Biomed. Eng., 49, 1526, 10.1109/TBME.2002.805482
Jiang, 2007, An automatic analysis method for detecting and eliminating ecg artifacts in EEG, Comput. Biol. Med., 37, 1660, 10.1016/j.compbiomed.2007.03.007
Waser, 2013, Removing cardiac interference from the Electroencephalogram using a modified Pan-Tompkins algorithm and linear regression, 2028
Navarro, 2012, ECG removal in preterm ECG combining empirical mode decomposition and adaptive filtering, 661
Patel, 2017, Common methodology for Cardiac and Ocular artifact suppression from EEG recordings by combining ensemble empirical mode decomposition with regression approach, J. Medi. Biol. Eng., 37, 201, 10.1007/s40846-016-0208-y
Dora, 2019, Efficient detection and correction of variable strength ECG artifact from single channel EEG, Biomed. Signal Process. Control, 50, 168, 10.1016/j.bspc.2019.01.023
Dragomiretskiy, 2014, Variational mode decomposition, IEEE Trans. Signal Process., 62, 531, 10.1109/TSP.2013.2288675
Wang, 2016, Filter bank property of variational mode decomposition and its applications, Signal Process., 120, 509, 10.1016/j.sigpro.2015.09.041
Wang, 2015, Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system, Mech. Syst. Signal Process., 60, 243, 10.1016/j.ymssp.2015.02.020
Achlerkar, 2018, Variational mode decomposition and decision tree based detection and classification of power quality disturbances in grid-connected distributed generation system, IEEE Trans. Smart Grid, 9, 3122, 10.1109/TSG.2016.2626469
Simsek, 2017, Frequency estimation for monophonical music by using a modified VMD method, 1873
Zhang, 2016, Deterministic and probabilistic interval prediction for short-term wind power generation based on variational mode decomposition and machine learning methods, Energy Convers. Manage., 112, 208, 10.1016/j.enconman.2016.01.023
Yücelbaş, 2018, A novel system for automatic detection of k-complexes in sleep EEG, Neural Comput. Appl., 29, 137, 10.1007/s00521-017-2865-3
Yücelbaş, 2018, Automatic sleep staging based on SVD, VMD, HHT and morphological features of single-lead ECG signal, Expert Syst. Appl., 102, 193, 10.1016/j.eswa.2018.02.034
Tripathy, 2016, Detection of shockable ventricular arrhythmia using variational mode decomposition, J. Med. Syst., 40, 79, 10.1007/s10916-016-0441-5
Pratiher, 2018, Early stage detection of precancer using variational mode decomposition and artificial neural network, 10685, 1068523
Nagineni, 2018, Features based on variational mode decomposition for identification of neuromuscular disorder using EMG signals, Health Inf. Sci. Syst., 6, 13, 10.1007/s13755-018-0050-4
Nguyen, 2018, Deep feature learning for sudden cardiac arrest detection in automated external defibrillators, Sci. Rep., 8, 17196, 10.1038/s41598-018-33424-9
Huang, 1998, The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis, 454, 903
Wu, 2009, Ensemble empirical mode decomposition: a noise-assisted data analysis method, Adv. Adapt. data Anal., 1, 1, 10.1142/S1793536909000047
Tihonov, 1963, Solution of incorrectly formulated problems and the regularization method, Soviet Math., 4, 1035
Golub, 1999, Tikhonov regularization and total least squares, SIAM J. Matrix Anal. Appl., 21, 185, 10.1137/S0895479897326432
Hestenes, 1969, Multiplier and gradient methods, J. Optim. Theory Appl., 4, 303, 10.1007/BF00927673
Zou, 2005, Regularization and variable selection via the elastic net, J. R. Stat. Soc., 67, 301, 10.1111/j.1467-9868.2005.00503.x
Stern, 2005
Chakrabarti, 2016, ECG contamination of EEG signals: effect on entropy, J. Clin. Monit. Comput., 30, 119, 10.1007/s10877-015-9694-7
Spodick, 1992, Normal sinus heart rate: Sinus tachycardia and sinus bradycardia redefined, Am. Heart J., 124, 1119, 10.1016/0002-8703(92)91012-P
Ichimaru Y, 1999, Development of the polysomnographic database on cd-rom, Psychiatry Clin. Neurosci., 53, 175, 10.1046/j.1440-1819.1999.00527.x
Goldberger, 2000, PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals, Circulation, 101, e215, 10.1161/01.CIR.101.23.e215
Chen, 2014, A preliminary study of muscular artifact cancellation in single-channel EEG, Sensors, 14, 18370, 10.3390/s141018370
Terzano, 2001, Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (cap) in human sleep, Sleep Med., 2, 537, 10.1016/S1389-9457(01)00149-6
Klados, 2011, REG-ICA: A hybrid methodology combining blind source separation and regression techniques for the rejection of ocular artifacts, Biomed. Signal Process. Control, 6, 291, 10.1016/j.bspc.2011.02.001
Khatun, 2016, Comparative study of wavelet-based unsupervised ocular artifact removal techniques for single-channel EEG data, IEEE J. Trans. Eng. Health Med., 4, 1, 10.1109/JTEHM.2016.2544298
S. Yucelbas, C. Yucelbas, S. Ozsen, G. Tezel, M. Dursun, S. Kuccukturk, S. Yosunkaya, Effect on the classification results of ECG artifacts in full night sleep EEG.
Merica, 1998, Spectral characteristics of sleep EEG in chronic insomnia, Eur. J. Neurosci., 10, 1826, 10.1046/j.1460-9568.1998.00189.x
Poli, 1993, On the use of the normalized mean square error in evaluating dispersion model performance, Atmos. Environ. Part A. Gen. Topics, 27, 2427, 10.1016/0960-1686(93)90410-Z