From a long-lived upper-crustal magma chamber to rapid porphyry copper emplacement: Reading the geochemistry of zircon crystals at Bajo de la Alumbrera (NW Argentina)

Earth and Planetary Science Letters - Tập 450 - Trang 120-131 - 2016
Yannick Buret1, Albrecht von Quadt1, Christoph Heinrich1, David Selby2, Markus Wälle1, Irena Peytcheva1,3
1Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zürich, Clausiusstrasse 25, 8092 Zürich, Switzerland
2Department of Earth Sciences, Durham University, Durham DH1 3LE, United Kingdom
3Geological Institute, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

Tài liệu tham khảo

Allmendinger, 1986, Tectonic development, southeastern border of the Puna Plateau, northwestern Argentine Andes, Geol. Soc. Am. Bull., 97, 1070, 10.1130/0016-7606(1986)97<1070:TDSBOT>2.0.CO;2 Bachmann, 2006, Gas percolation in upper-crustal silicic crystal mushes as a mechanism for upward heat advection and rejuvenation of near-solidus magma bodies, J. Volcanol. Geotherm. Res., 149, 85, 10.1016/j.jvolgeores.2005.06.002 Bachmann, 2007, 40Ar/39Ar and U–Pb dating of the Fish Canyon magmatic system, San Juan Volcanic field, Colorado: evidence for an extended crystallization history, Chem. Geol., 236, 134, 10.1016/j.chemgeo.2006.09.005 Ballard, 2002, Relative oxidation states of magmas inferred from Ce (IV)/Ce (III) in zircon: application to porphyry copper deposits of northern Chile, Contrib. Mineral. Petrol., 144, 347, 10.1007/s00410-002-0402-5 Botcharnikov, 2005, Solubility of C–O–H mixtures in natural melts: new experimental data and application range of recent models, Ann. Geophys., 48, 633 Bowring, 2011, Engineering cyber infrastructure for U–Pb geochronology: tripoli and U–Pb_Redux, Geochem. Geophys. Geosyst., 12, 10.1029/2010GC003479 Broderick, 2015, Linking the thermal evolution and emplacement history of an upper-crustal pluton to its lower-crustal roots using zircon geochronology and geochemistry (southern Adamello batholith, N. Italy), Contrib. Mineral. Petrol., 170, 1, 10.1007/s00410-015-1184-x Burnham, 2012, An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity, Geochim. Cosmochim. Acta, 95, 196, 10.1016/j.gca.2012.07.034 Burnham, 1980, Late-stage processes of felsic magmatism, Soc. Mining Geol. Jpn., 8, 1 Candela, 1989, Magmatic ore-forming fluids: thermodynamic and mass transfer calculations of metal concentrations, Rev. Econ. Geol., 4, 203 Cathles, 1977, An analysis of the cooling of intrusives by ground-water convection which includes boiling, Econ. Geol., 72, 804, 10.2113/gsecongeo.72.5.804 Cathles, 2007, How potassium silicate alteration suggests the formation of porphyry ore deposits begins with the nearly explosive but barren expulsion of large volumes of magmatic water, Earth Planet. Sci. Lett., 262, 92, 10.1016/j.epsl.2007.07.029 Charlier, 2007, The upper crustal evolution of a large silicic magma body: evidence from crystal-scale Rb–Sr isotopic heterogeneities in the Fish Canyon magmatic system, Colorado, J. Petrol., 48, 1875, 10.1093/petrology/egm043 Chelle-Michou, 2014, Zircon petrochronology reveals the temporal link between porphyry systems and the magmatic evolution of their hidden plutonic roots (the Eocene Coroccohuayco deposit, Peru), Lithos, 198, 129, 10.1016/j.lithos.2014.03.017 Cherniak, 1997, Diffusion of tetravalent cations in zircon, Contrib. Mineral. Petrol., 127, 383, 10.1007/s004100050287 Cherniak, 1997, Rare-Earth diffusion in zircon, Chem. Geol., 134, 289, 10.1016/S0009-2541(96)00098-8 Chiaradia, 2013, How accurately can we date the duration of magmatic-hydrothermal events in porphyry systems?—an invited paper, Econ. Geol., 108, 565, 10.2113/econgeo.108.4.565 Claiborne, 2010, Zircon reveals protracted magma storage and recycling beneath Mount St. Helens, Geology, 38, 1011, 10.1130/G31285.1 Coleman, 2004, Rethinking the emplacement and evolution of zoned plutons: geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California, Geology, 32, 433, 10.1130/G20220.1 Condon, 2015, Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I), Geochim. Cosmochim. Acta, 164, 464, 10.1016/j.gca.2015.05.026 Deering, 2010, Trace element indicators of crystal accumulation in silicic igneous rocks, Earth Planet. Sci. Lett., 297, 324, 10.1016/j.epsl.2010.06.034 Dilles, 1987, Petrology of the Yerington Batholith, Nevada; evidence for evolution of porphyry copper ore fluids, Econ. Geol., 82, 1750, 10.2113/gsecongeo.82.7.1750 Dilles, 2015, Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas, Econ. Geol., 110, 241, 10.2113/econgeo.110.1.241 Ferry, 2007, New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers, Contrib. Mineral. Petrol., 154, 429, 10.1007/s00410-007-0201-0 Glazner, 2004, Are plutons assembled over millions of years by amalgamation from small magma chambers?, GSA Today, 14, 4, 10.1130/1052-5173(2004)014<0004:APAOMO>2.0.CO;2 Halter, 2004, From andesitic volcanism to the formation of a porphyry Cu–Au mineralizing magma chamber: the Farallón Negro Volcanic Complex, northwestern Argentina, J. Volcanol. Geotherm. Res., 136, 1, 10.1016/j.jvolgeores.2004.03.007 Halter, 2004, Laser-ablation ICP-MS analysis of silicate and sulfide melt inclusions in an andesitic complex II: evidence for magma mixing and magma chamber evolution, Contrib. Mineral. Petrol., 147, 397, 10.1007/s00410-004-0563-5 Halter, 2005, Magma evolution and the formation of porphyry Cu–Au ore fluids: evidence from silicate and sulfide melt inclusions, Miner. Depos., 39, 845, 10.1007/s00126-004-0457-5 Harris, 2004, ELA-ICP-MS U–Pb zircon geochronology of regional volcanism hosting the Bajo de la Alumbrera Cu–Au deposit: implications for porphyry-related mineralization, Miner. Depos., 39, 46, 10.1007/s00126-003-0381-0 Harris, 2004, Volatile phase separation in silicic magmas at Bajo de la Alumbrera porphyry Cu–Au deposit, NW Argentina, Resour. Geol., 54, 341, 10.1111/j.1751-3928.2004.tb00210.x Hattori, 1993, High-sulfur magma, a product of fluid discharge from underlying mafic magma: evidence from Mount Pinatubo, Philippines, Geology, 21, 1083, 10.1130/0091-7613(1993)021<1083:HSMAPO>2.3.CO;2 Hattori, 2001, Contribution of mafic melt to porphyry copper mineralization: evidence from Mount Pinatubo, Philippines, and Bingham Canyon, Utah, USA, Miner. Depos., 36, 799, 10.1007/s001260100209 Hofmann, 2009, Sub-micron scale distributions of trace elements in zircon, Contrib. Mineral. Petrol., 158, 317, 10.1007/s00410-009-0385-6 Huber, 2012, A physical model for metal extraction and transport in shallow magmatic systems, Geochem. Geophys. Geosyst., 13, 10.1029/2012GC004042 Llambías, 1972, Estructura del grupo volcanico Farallon Negro, Catamarca, Republica Argentina, Rev. Asoc. Geol. Argent., 27, 161 Mattinson, 2005, Zircon U–Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages, Chem. Geol., 220, 47, 10.1016/j.chemgeo.2005.03.011 Mattinson, 2011, Extending the Krogh legacy: development of the CA-TIMS method for zircon U–Pb geochronology, Can. J. Earth Sci., 48, 95, 10.1139/E10-023 Matzel, 2006, Time scales of pluton construction at differing crustal levels: examples from the Mount Stuart and Tenpeak intrusions, North Cascades, Washington, Geol. Soc. Am. Bull., 118, 1412, 10.1130/B25923.1 McLean, 2011, An algorithm for U–Pb isotope dilution data reduction and uncertainty propagation, Geochem. Geophys. Geosyst., 12, 10.1029/2010GC003478 McLean, 2015, Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II), Geochim. Cosmochim. Acta, 164, 481, 10.1016/j.gca.2015.02.040 Memeti, 2010, Magmatic lobes as “snapshots” of magma chamber growth and evolution in large, composite batholiths: an example from the tuolumne intrusion, sierra Nevada, California, Geol. Soc. Am. Bull., 122, 1912, 10.1130/B30004.1 Mercer, 2015, Time scales of porphyry Cu deposit formation: insights from titanium diffusion in quartz, Econ. Geol., 110, 587, 10.2113/econgeo.110.3.587 Miller, 2011, Growth of plutons by incremental emplacement of sheets in crystal-rich host: evidence from Miocene intrusions of the Colorado River region, Nevada, USA, Tectonophysics, 500, 65, 10.1016/j.tecto.2009.07.011 Miller, 2007, Zircon growth and recycling during the assembly of large, composite arc plutons, J. Volcanol. Geotherm. Res., 167, 282, 10.1016/j.jvolgeores.2007.04.019 Nadeau, 2013, The behavior of Cu, Zn and Pb during magmatic-hydrothermal activity at Merapi volcano, Indonesia, Chem. Geol., 342, 167, 10.1016/j.chemgeo.2013.01.018 Ohnenstetter, 1991, Émissions de cathodoluminescence de deux populations de zircons naturels: tentative d'interprétation, C. R. Séances Acad. Sci., Sér. 2 Méc.-Phys. Chim. Sci. Univers Sci. Terre, 313, 641 Proffett, 2003, Geology of the Bajo de la Alumbrera porphyry copper–gold deposit, Argentina, Econ. Geol., 98, 1535, 10.2113/gsecongeo.98.8.1535 Reid, 2011, Zircon-scale insights into the history of a Supervolcano, Bishop Tuff, Long Valley, California, with implications for the Ti-in-zircon geothermometer, Contrib. Mineral. Petrol., 161, 293, 10.1007/s00410-010-0532-0 Rivera, 2014, Rapid magma evolution constrained by zircon petrochronology and 40Ar/39Ar sanidine ages for the Huckleberry Ridge Tuff, Yellowstone, USA, Geology, 42, 643, 10.1130/G35808.1 Rubatto, 2007, Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks, Chem. Geol., 241, 38, 10.1016/j.chemgeo.2007.01.027 Samperton, 2015, Magma emplacement, differentiation and cooling in the middle crust: integrated zircon geochronological–geochemical constraints from the Bergell Intrusion, Central Alps, Chem. Geol., 417, 322, 10.1016/j.chemgeo.2015.10.024 Sasso, 1998, The Farallón Negro Group, northwest Argentina: magmatic, hydrothermal and tectonic evolution and implications for Cu–Au metallogeny in the Andean back-arc, Soc. Econ. Geol. Newslett., 34, 8 Schaltegger, 2009, Zircon and titanite recording 1.5 million years of magma accretion, crystallization and initial cooling in a composite pluton (southern Adamello batholith, northern Italy), Earth Planet. Sci. Lett., 286, 208, 10.1016/j.epsl.2009.06.028 Schmitz, 2001, U–Pb zircon and titanite systematics of the Fish Canyon Tuff: an assessment of high-precision U–Pb geochronology and its application to young volcanic rocks, Geochim. Cosmochim. Acta, 65, 2571, 10.1016/S0016-7037(01)00616-0 Schmitz, 2007, Derivation of isotope ratios, errors, and error correlations for U–Pb geochronology using 205Pb–235U–(233U)-spiked isotope dilution thermal ionization mass spectrometric data, Geochem. Geophys. Geosyst., 8, 10.1029/2006GC001492 Schoene, 2010, Correlating the end-Triassic mass extinction and flood basalt volcanism at the 100 ka level, Geology, 38, 387, 10.1130/G30683.1 Schoene, 2010, A new method integrating high-precision U–Pb geochronology with zircon trace element analysis (U–Pb TIMS-TEA), Geochim. Cosmochim. Acta, 74, 7144, 10.1016/j.gca.2010.09.016 Schoene, 2012, Rates of magma differentiation and emplacement in a ballooning pluton recorded by U–Pb TIMS-TEA, Adamello batholith, Italy, Earth Planet. Sci. Lett., 355, 162, 10.1016/j.epsl.2012.08.019 Sillitoe, 2010, Porphyry copper systems, Econ. Geol., 105, 3, 10.2113/gsecongeo.105.1.3 Smoliar, 1996, Re–Os ages of group IIA, IIIA, IVA, and IVB iron meteorites, Science, 271, 1099, 10.1126/science.271.5252.1099 Steinberger, 2013, Source plutons driving porphyry copper ore formation: combining geomagnetic data, thermal constraints, and chemical mass balance to quantify the magma chamber beneath the Bingham Canyon deposit, Econ. Geol., 108, 605, 10.2113/econgeo.108.4.605 Tapster, 2016, Rapid thermal rejuvenation of high-crystallinity magma linked to porphyry copper deposit formation; evidence from the Koloula Porphyry Prospect, Solomon Islands, Earth Planet. Sci. Lett., 442, 206, 10.1016/j.epsl.2016.02.046 Trail, 2015, Redox evolution of silicic magmas: insights from XANES measurements of Ce valence in Bishop Tuff zircons, Chem. Geol., 402, 77, 10.1016/j.chemgeo.2015.02.033 Trail, 2012, Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas, Geochim. Cosmochim. Acta, 97, 70, 10.1016/j.gca.2012.08.032 Ulrich, 2002, Geology and alteration geochemistry of the porphyry Cu–Au deposit at Bajo de la Alumbrera, Argentina, Econ. Geol., 97, 1865, 10.2113/gsecongeo.97.8.1865 Von Quadt, 2011, Zircon crystallization and the lifetimes of ore-forming magmatic–hydrothermal systems, Geology, 39, 731, 10.1130/G31966.1 von Quadt, 2016, High-precision zircon U/Pb geochronology by ID-TIMS using new 1013 ohm resistors, J. Anal. At. Spectrom., 31, 545, 10.1039/C5JA00457H Wark, 2007, Pre-eruption recharge of the Bishop magma system, Geology, 35, 235, 10.1130/G23316A.1 Watson, 2005, Zircon thermometer reveals minimum melting conditions on earliest Earth, Science, 308, 841, 10.1126/science.1110873 Watson, 2006, Crystallization thermometers for zircon and rutile, Contrib. Mineral. Petrol., 151, 413, 10.1007/s00410-006-0068-5 Weis, 2012, Porphyry-copper ore shells form at stable pressure–temperature fronts within dynamic fluid plumes, Science, 338, 1613, 10.1126/science.1225009 Wendt, 1991, The statistical distribution of the mean squared weighted deviation, Chem. Geol., Isot. Geosci. Sect., 86, 275, 10.1016/0168-9622(91)90010-T Wotzlaw, 2013, Tracking the evolution of large-volume silicic magma reservoirs from assembly to supereruption, Geology, 41, 867, 10.1130/G34366.1 Zajacz, 2009, Copper transport by high temperature, sulfur-rich magmatic vapor: evidence from silicate melt and vapor inclusions in a basaltic andesite from the Villarrica volcano (Chile), Earth Planet. Sci. Lett., 282, 115, 10.1016/j.epsl.2009.03.006