Aerobic catalytic systems inspired by copper amine oxidases: recent developments and synthetic applications

Organic and Biomolecular Chemistry - Tập 15 Số 22 - Trang 4722-4730
Martine Largeron1,2,3,4,5
175270 Paris cedex 06
2Faculté de Pharmacie de Paris
3France
4Sorbonne Paris Cité
5UMR 8638 CNRS-Université Paris Descartes

Tóm tắt

Recently, chemists have developed aerobic quinone-based catalytic systems in order to reproduce enzymatic activity and selectivity of copper amine oxidases but also to expand the scope of amine substrates.

Từ khóa


Tài liệu tham khảo

Klinman, 1996, Chem. Rev., 96, 2541, 10.1021/cr950047g

Klinman, 2003, Biochim. Biophys. Acta, 1647, 131, 10.1016/S1570-9639(03)00077-3

Brazeau, 2004, Arch. Biochem. Biophys., 428, 22, 10.1016/j.abb.2004.03.034

Matyus, 2004, Curr. Med. Chem., 11, 1285, 10.2174/0929867043365305

Strolin Benedetti, 2007, Fundam. Clin. Pharmacol., 21, 467, 10.1111/j.1472-8206.2007.00498.x

Boobis, 2009, Drug Metab. Rev., 41, 486, 10.1080/10837450902891550

Dunkel, 2008, Curr. Med. Chem., 15, 1827, 10.2174/092986708785133022

Yraola, 2009, ChemMedChem, 4, 495, 10.1002/cmdc.200800393

Kaitaneimi, 2009, Cell. Mol. Life Sci., 66, 2743, 10.1007/s00018-009-0076-5

Shepard, 2015, Acc. Chem. Res., 48, 1218, 10.1021/ar500460z

S. Suzuki , T.Okajima, K.Tanizawa and M.Mure, Cofactors of amine oxidases. Copper ion and its substitution and the 2,4,5-trihydroxyphenylalanine quinone, in Copper Amine Oxidases. Structures, Catalytic Mechanisms, and Role in Pathophysiology, ed. G. Floris and B. Mondovi, CRC Press, Taylor and Francis Group Publishing, New York, 2009, p. 19

Janes, 1990, Science, 248, 981, 10.1126/science.2111581

Klinman, 2014, Chem. Rev., 114, 4343, 10.1021/cr400475g

Lee, 1995, J. Am. Chem. Soc., 117, 3096, 10.1021/ja00116a014

Mure, 1995, J. Am. Chem. Soc., 117, 8698, 10.1021/ja00139a002

Mure, 1995, J. Am. Chem. Soc., 117, 8707, 10.1021/ja00139a003

Lee, 1995, J. Am. Chem. Soc., 117, 11823, 10.1021/ja00153a001

Ling, 2001, J. Am. Chem. Soc., 123, 9606, 10.1021/ja011141j

Mure, 2003, J. Am. Chem. Soc., 125, 6113, 10.1021/ja0214274

Mure, 2002, Biochemistry, 41, 9269, 10.1021/bi020246b

Mure, 2004, Acc. Chem. Res., 37, 131, 10.1021/ar9703342

DuBois, 2005, Arch. Biochem. Biophys., 433, 255, 10.1016/j.abb.2004.08.036

Schwartz, 2001, Biochemistry, 40, 2954, 10.1021/bi0021378

Zhang, 2007, Bioorg. Med. Chem., 15, 1868, 10.1016/j.bmc.2006.11.025

Que Jr., 2008, Nature, 455, 333, 10.1038/nature07371

Schümperli, 2012, ACS Catal., 2, 1108, 10.1021/cs300212q

Largeron, 2013, Science, 339, 43, 10.1126/science.1232220

Wendlandt, 2015, Angew. Chem., Int. Ed., 54, 14638, 10.1002/anie.201505017

Adams, 2000, J. Chem. Soc., Perkin Trans. 1, 125, 10.1039/a808142e

Patil, 2013, Asian J. Org. Chem., 2, 726, 10.1002/ajoc.201300012

Largeron, 2013, Eur. J. Org. Chem., 5225, 10.1002/ejoc.201300315

Chen, 2015, ACS Catal., 5, 5851, 10.1021/acscatal.5b01479

Wendlandt, 2012, Org. Lett., 14, 2850, 10.1021/ol301095j

Miyabe, 2004, Synlett, 2597

Miyabe, 2006, J. Org. Chem., 71, 2099, 10.1021/jo052518x

Leon, 2016, Eur. J. Org. Chem., 4508, 10.1002/ejoc.201600786

Klema, 2013, Biochemistry, 52, 2291, 10.1021/bi3016845

Tavladoraki, 2016, Front. Plant Sci., 7, 824, 10.3389/fpls.2016.00824

Largeron, 2012, Angew. Chem., Int. Ed., 51, 5409, 10.1002/anie.201200587

Piera, 2008, Angew. Chem., Int. Ed., 47, 3506, 10.1002/anie.200700604

Largeron, 2000, J. Org. Chem., 65, 8874, 10.1021/jo000478l

Largeron, 2003, Angew. Chem., Int. Ed., 42, 1026, 10.1002/anie.200390263

Largeron, 2008, Chem. – Eur. J., 14, 996, 10.1002/chem.200700876

Largeron, 2010, ECS Trans., 25, 97, 10.1149/1.3312768

Largeron, 2010, Org. Biomol. Chem., 8, 3706, 10.1039/c004501b

Xu, 2006, J. Org. Chem., 71, 6374, 10.1021/jo060452f

Largeron, 2015, Chem. – Eur. J., 21, 3815, 10.1002/chem.201405843

Belowich, 2012, Chem. Soc. Rev., 41, 2003, 10.1039/c2cs15305j

Ushakov, 2015, Chem. – Eur. J., 21, 6528, 10.1002/chem.201500121

Nguyen, 2015, Chem. – Eur. J., 21, 12606, 10.1002/chem.201502487

Nguyen, 2016, Eur. J. Org. Chem., 1025, 10.1002/ejoc.201501520

Jawale, 2014, Chem. Commun., 50, 15251, 10.1039/C4CC07951E

Murray, 2016, ChemCatChem, 8, 510, 10.1002/cctc.201501153

Murray, 2015, Angew. Chem., Int. Ed., 54, 8997, 10.1002/anie.201503654

Qin, 2015, Org. Lett., 17, 1469, 10.1021/acs.orglett.5b00351

Yuan, 2012, J. Am. Chem. Soc., 134, 13970, 10.1021/ja306934b

Akiyama, 2009, Chem. Rev., 109, 594, 10.1021/cr800529d

Lee, 1996, J. Am. Chem. Soc., 118, 7241, 10.1021/ja9543210

Lee, 2002, J. Am. Chem. Soc., 124, 12135, 10.1021/ja0205434

Jawale, 2015, Chem. – Eur. J., 21, 7039, 10.1002/chem.201500148

Wendlandt, 2014, J. Am. Chem. Soc., 136, 506, 10.1021/ja411692v

Goss, 1985, Inorg. Chem., 24, 4263, 10.1021/ic00219a012

Wendlandt, 2014, J. Am. Chem. Soc., 136, 11910, 10.1021/ja506546w

Goriya, 2016, Org. Lett., 18, 5174, 10.1021/acs.orglett.6b02697