Thermophysical properties affecting safety and performance of nuclear fuel
Tóm tắt
Improvement of the nuclear fuel exploitation has been one of the main objectives of reactor technology during the last decades. Today, in view of a sustainable nuclear energy production, development of advanced reactors re-proposes the choice of innovative fuel cycle concepts, in a context of greater expectations and more stringent requirements. From the experience gained in the past, a fuel research and development strategy can be devised, by which selected physical properties are taken as in-pile fuel performance indices. Uranium dioxide, by far the most important fuel used in power plants, proved from the very beginning to have good design-related properties as well as an excellent resistance to radiation damage. Therefore, increasingly higher performance was demanded concerning lifetime in current power reactors, maximum burn-up and safe operation. Yet, fuel test campaigns carried out in the last years have shown that at very high burn-ups, conditions are attained where radical restructuring processes take place in the UO2 lattice, irrespective of the irradiation regime of the fuel rods. This has led to an intense research activity on the effects of radiation damage on the thermophysical properties of the fuel. Energy and matter transport processes were found to be strongly affected by reactor irradiation, the in-pile performance of the fuel being governed by self-healing processes that can be only in part controlled. Furthermore, in the severe reactor accidents the fuel high temperature thermodynamic properties must comply with safety requirements to be satisfied under conditions which have been not yet explored. Therefore, their description and formulation for applications in different scenarios represent one of the main goals of the future research on advanced fuels.
Tài liệu tham khảo
Brailsford, A.D. and Bullough, R., Physical Metallurgy of Reactor Fuel Elements, London: The Metals Society, 1975.
Rest, J. and Hofman, G.L., J. Nucl. Mater., 1995, vol. 223, p. 192.
Jonnet, J., Report S/027/04, European Commission, Inst. of Transuranium Elements, Karlsruhe, 2004.
Jonnet, J., Van Uffelen, P., Staicu, D. et al., in Proc. 18th Int. Conf. on Structural Mechanics in Reactor Technology (SMiRT 18), Beijing, 2005, Paper SMIRT 18-CO6-2.
Kröner, Kontinuumstheorie der Versetzungen und Eigenspannungen, Berlin: Springer, 1958.
Nelson, R.S., J. Nucl. Mater., 1966, vol. 18, p. 348.
Ronchi, C. and Elton, P.T., J. Nucl. Mater., 1986, vol. 140, p. 228.
Ronchi, C., J. Nucl. Mater., 1997, vol. 148, p. 316.
Ronchi, C., J. Nucl. Mater., 1979, vol. 84, p. 55.
Ronchi, C., J. Nucl. Mater., 1981, vol. 96, p. 314.
Wolfer, W.G., Effects of Radiation on Materials, in Proc. 10th Int. Symp.; sponsored by ASTM Committee E-10 on Nuclear Technology and Applications, American Society for testing and Materials, ASTM STP 725, Kramer, D., Brager, H.R., and Perrin, J.S., Eds., Savannah, Ga., 1981, p. 201.
Une, K., Nogita, K., Kashibe, S. et al., in Proc. Int. Topical Meeting on LWR Fuel Performance, Portland, Ore., 1997, p. 478.
Une, K., Hirai, M., Nogita, K., at al., J. Nucl. Mater., 2000, vol. 278, p. 54.
Ronchi, C., Colin, M., and Blank, H., Nucl. Technol., 1983, vol. 63, p. 442.
Ronchi, C., Eur. Appl. Res. Rep., 1984, vol. 6, nos. 1–2, p. 324.
Matzke, Hj., Science of Advanced LMFBR Fuels, Amsterdam: North-Holland, 1986.
Ronchi, C., J. Appl. Phys., 1973, vol. 44, p. 3575.
Ronchi, C. and Wiss, T., J. Appl. Phys., 2002, vol. 92, no. 10, p. 5837.
Turnbull, J.A., J. Nucl. Mater., 1971, vol. 38, p. 203.
Ishimoto, M., Hirai, M., Ito, K., and Korei, Y., J. Nucl. Sci. Technol., 1994, vol. 31, p. 796.
Kleykamp, H., J. Nucl. Mater., 1985, vol. 131, p. 221.
Krishnaiah, M.V., Seenivasan, G., Murti, P.S., and Mathews, C.K., J. Nucl. Mater., 2002, vol. 306, p. 10.
Eucken, A., Forsch. Gebiete Ingenieur B-3-Forshung, 1932, Heft No. 353, p. 6.
Wiesenack, W., in Proc. ANS Int. Topical Meeting on LWR Fuel Performance, Portland, Ore., 1997, Paper ISBN-0-89448-616-0.
Kinoshita, M., Sonoda, T., Kitajima, S. et al., in Proc. ANS Int. Topical Meeting on LWR Fuel Performance, Park City, Utah, 2000, Paper ISBN-0-89448-656-0.
Ronchi, C., Sheindlin, M., Staicu, D., and Kinoshita, M., J. Nucl. Mater., 2004, vol. 27, p. 58.
Ondracek, G., Z. Werkstofftech., 1977, vol. 8, p. 240.
Ondracek, G., Z. Werkstofftech., 1978, vol. 9, p. 31.
Duriez, C., Alessandri, J.P., Gervais, T., and Philipponneau, Y., J. Nucl. Mater., 2000, vol. 277, p. 143.
Ambegaoker, Y., Trans. Am. Nucl. Soc., 1966, vol. 9, p. 488.
Abeles, B., Phys. Rev., 1963, vol. 131, p. 1906.
Leibfried, G., and Schlömann, E., Nachr. Akad. Wiss. Göttingen Math. Phys., 1954, vol. KI 2-A, p. 71.
Lewis, H.D. and Kerrisk, J.F., US Report, LA 6096, Los Alamos Nat. Laboratory, 1976.
Storms, E.K., US Report, LA 9524, Los Alamos Nat. Laboratory, 1982.
Matsui, H., Ooba, K., and Kirihara, T., Radiat. Eff. Lett., 1981, vol. 58, p. 171.
Tamaki, M., Matsumoto, S., Ishimaru, K. et al., J. Nucl. Mater., 1982, vol. 108/9, p. 671.
Höh, A. and Matzke, Hj., J. Nucl. Mater., 1973, vol. 48, p. 157.
Matzke, Hj., Radiat. Eff., 1983, vol. 75, p. 317.
Rahman, A., Phys. Rev., 1964, vol. 136A, p. 405.
Blank, H. and Matzke, Hj., Radiat. Eff., 1973, vol. 17, p. 57.
Ronchi, C. and Elton, P.T., J. Nucl. Mater., 1986, vol. 140, p. 228.
Capone, F., Hiernaut, J.P., Martellenghi, M., and Ronchi, C., Nucl. Sci. Eng., 1996, vol. 124, p. 436.
Hiernaut, J.P. and Ronchi, C., Nucl. Mater., 2004, vol. 325, p. 12.
Chevalier, P.-Y., Fischer, E., and Cheynet, B., J. Nucl. Mater., 2002, vol. 303, p. 1.
Latta, R.E. and Fryxell, R.E., J. Nucl. Mater., 1970, vol. 35, p. 195.
Manara, D., Ronchi, C., and Sheindlin, M., J. Nucl. Mater., 2005, vol. 342, p. 148.
Babelot, J.F., Ohse, R.W., and Hoch, M., J. Nucl. Mater., 1986, vol. 137, p. 144.
Gryaznov, V. and Iosilevski, I., Izv. Ross. Akad. Nauk, 1999, vol. 63, no. 11, p. 2258.
Iosilevski, I., Hyland, G., Yakub, E., and Ronchi, C., Trans. Am. Nucl. Soc., 1999, vol. 81, p. 122.
Gryaznov, V., Iosilevski, I., Yakub, E., and Ronchi, C., Int. J. Thermophys., 2001, vol. 22, p. 1253.
Ronchi, C., Hiernaut, J.P., Selfslag, R., and Hyland, G.J., Nucl. Sci. Eng., 1993, vol. 113, p. 1.
Fischer, E.A., Nucl. Sci. Eng., 1989, vol. 101, p. 97.
Ronchi, C., Iosilevski, I., and Yakub, E., The Equation of State of UO 2 , Berlin: Springer, 2005.
Green, D.W. and Leibowitz, L., J. Nucl. Mater., 1982, vol. 105, p. 184.
Ohse, R.W., Babelot, J.F., Cercignani, C. et al., J. Nucl. Mater., 1985, vol. 130, p. 165.
Yakub, E., Ronchi, C., and Iosilevski, I., J. Phys. Condens. Matter, 2006, vol. 18, no. 4, p. 1227.
Dworkin, A.S. and Bredig, M.A., J. Phys. Chem., 1968, vol. 72, p. 1277.
Bredig, M.A., Report 4437, Oak Ridge Nat. Laboratory, 1969, p. 101.
Hiernaut, J.P., Hyland, G.J., and Ronchi, C., Int. J. Thermophys., 1993, vol. 14, p. 259.