PO43− polyanion-doping for stabilizing Li-rich layered oxides as cathode materials for advanced lithium-ion batteries

Journal of Materials Chemistry A - Tập 2 Số 20 - Trang 7454-7460
H. Z. Zhang1,2,3,4,5, Q. Q. Qiao1,2,3,4,5, Guo‐Ran Li1,2,3,4,5, Xueping Gao1,2,3,4,5
1Collaborative Innovation Center of Chemical Science and Engineering (Tianjin)
2Institute of New Energy Material Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Nankai University, Tianjin 300071, China
3Nankai University;
4Tianjin 300071, China
5Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry

Tóm tắt

PO43− polyanion-doped Li-rich layered oxides offer excellent energy density retention during long cycling due to the stronger anion bonding of PO43− polyanions to transition metal cations.

Từ khóa


Tài liệu tham khảo

Tarascon, 2001, Nature, 414, 359, 10.1038/35104644

Gao, 2010, Energy Environ. Sci., 3, 174, 10.1039/B916098A

Lee, 2011, Adv. Energy Mater., 1, 34, 10.1002/aenm.201000010

Lu, 2002, J. Electrochem. Soc., 149, A815, 10.1149/1.1480014

Thackeray, 2005, J. Mater. Chem., 15, 2257, 10.1039/b417616m

Armstrong, 2006, J. Am. Chem. Soc., 128, 8694, 10.1021/ja062027+

Thackeray, 2007, J. Mater. Chem., 17, 3112, 10.1039/b702425h

Wei, 2010, Adv. Mater., 22, 4364, 10.1002/adma.201001578

Yabuuchi, 2011, J. Am. Chem. Soc., 133, 4404, 10.1021/ja108588y

Li, 2011, J. Power Sources, 196, 4821, 10.1016/j.jpowsour.2011.01.006

Ohzuku, 2011, J. Mater. Chem., 21, 10179, 10.1039/c0jm04325g

He, 2012, RSC Adv., 2, 3423, 10.1039/c2ra20122d

Zhang, 2012, J. Mater. Chem., 22, 13104, 10.1039/c2jm30989k

Sun, 2012, Adv. Mater., 24, 1192, 10.1002/adma.201104106

Mohanty, 2013, J. Power Sources, 229, 239, 10.1016/j.jpowsour.2012.11.144

Wang, 2009, J. Mater. Chem., 19, 4965, 10.1039/b823506f

Liu, 2010, J. Mater. Chem., 20, 3961, 10.1039/b925711j

Zheng, 2008, J. Electrochem. Soc., 155, A775, 10.1149/1.2966694

Deng, 2010, J. Electrochem. Soc., 157, A1035, 10.1149/1.3467855

Rosina, 2012, J. Mater. Chem., 22, 20602, 10.1039/c2jm34114j

Shin, 2012, J. Electrochem. Soc., 159, A121, 10.1149/2.098202jes

Qiao, 2013, J. Mater. Chem. A, 1, 5262, 10.1039/c3ta00028a

Wang, 2014, Electrochim. Acta, 116, 250, 10.1016/j.electacta.2013.10.215

Meng, 2005, Chem. Mater., 17, 2386, 10.1021/cm047779m

Boulineau, 2009, Chem. Mater., 21, 4216, 10.1021/cm900998n

http://www.wiredchemist.com/chemistry/data/atomic-and-ionic-radii

He, 2013, J. Mater. Chem. A, 1, 9760, 10.1039/c3ta11665d

Li, 2013, J. Mater. Chem. A, 1, 9760, 10.1039/c3ta11665d

Shaju, 2002, Electrochim. Acta, 48, 145, 10.1016/S0013-4686(02)00593-5

Nithya, 2011, Phys. Chem. Chem. Phys., 13, 6125, 10.1039/c0cp02258f

Kumar, 2011, J. Electrochem. Soc., 158, A227, 10.1149/1.3527059

Hu, 2013, Electrochim. Acta, 102, 8, 10.1016/j.electacta.2013.03.168

Markevich, 2012, Electrochem. Commun., 15, 22, 10.1016/j.elecom.2011.11.014

Ramana, 2007, J. Phys. Chem. C, 111, 1049, 10.1021/jp065072c

Etienne, 2003, Appl. Catal., A, 256, 275, 10.1016/S0926-860X(03)00408-3

Gu, 2013, ACS Nano, 7, 760, 10.1021/nn305065u

Xu, 2011, Energy Environ. Sci., 4, 2223, 10.1039/c1ee01131f

Johnson, 2008, Chem. Mater., 20, 6095, 10.1021/cm801245r

Yu, 2013, J. Mater. Chem. A, 1, 2833, 10.1039/c2ta00309k

Morishita, 2013, J. Electrochem. Soc., 160, A1311, 10.1149/2.112308jes

Wang, 2013, J. Power Sources, 236, 25, 10.1016/j.jpowsour.2013.02.022

Kim, 2012, J. Power Sources, 220, 422, 10.1016/j.jpowsour.2012.07.135

Fell, 2012, Energy Environ. Sci., 5, 6214, 10.1039/c2ee02818b

Amalraj, 2010, J. Electrochem. Soc., 157, A1121, 10.1149/1.3463782

Qiu, 2013, J. Power Sources, 240, 530, 10.1016/j.jpowsour.2013.04.047

Arunkumar, 2008, J. Mater. Chem., 18, 190, 10.1039/B713326J

Mohanty, 2013, J. Mater. Chem. A, 1, 6249, 10.1039/c3ta10304h