An Effective Automatic Procedure for Testing Parameter Identifiability of HIV/AIDS Models

Maria Pia Saccomani1
1Department of Information Engineering, University of Padova, Padova, Italy

Tóm tắt

Realistic HIV models tend to be rather complex and many recent models proposed in the literature could not yet be analyzed by traditional identifiability testing techniques. In this paper, we check a priori global identifiability of some of these nonlinear HIV models taken from the recent literature, by using a differential algebra algorithm based on previous work of the author. The algorithm is implemented in a software tool, called DAISY (Differential Algebra for Identifiability of SYstems), which has been recently released (DAISY is freely available on the web site http://www.dei.unipd.it/~pia/ ). The software can be used to automatically check global identifiability of (linear and) nonlinear models described by polynomial or rational differential equations, thus providing a general and reliable tool to test global identifiability of several HIV models proposed in the literature. It can be used by researchers with a minimum of mathematical background.

Từ khóa


Tài liệu tham khảo

Audoly, S., Bellu, G., D’Angiò, L., Saccomani, M. P., & Cobelli, C. (2001). Global identifiability of nonlinear models of biological systems. IEEE Trans. Biomed. Eng., 48(1), 55–65.

Bellu, G., Saccomani, M. P., Audoly, S., & D’Angiò, L. (2007). DAISY: A new software tool to test global identifiability of biological and physiological systems. Comput. Methods Programs Biomed., 88, 52–61.

Brandt, M., & Chen, G. (2001). Feedback control of a biodynamical model of HIV-1. IEEE Trans. Biomed. Eng., 48(7), 754–759.

Buchberger, B. (1988). An algorithmical criterion for the solvability of algebraic system of equation. Aequ. Math., 4(3), 45–50.

Burg, D., Rong, L., Neumann, A. U., & Dahari, H. (2009). Mathematical modeling of viral kinetics under immune control during primary HIV-1 infection. J. Theor. Biol., 259, 751–759.

Chang, H., & Astolfi, A. (April 2008). Control of HIV infection dynamics. IEEE Control Systems Magazine, 28–39.

Chapman, M. J., Godfrey, K. R., Chappell, M. J., & Evans, N. D. (2003). Structural identifiability of non-linear systems using linear/non-linear splitting. Int. J. Control, 76(3), 209–216.

Chappell, M. J., & Godfrey, K. R. (1992). Structural identifiability of the parameters of a nonlinear batch reactor model. Math. Biosci., 108, 245–251.

Forsman, K. (1991). Constructive commutative algebra in nonlinear control theory. Linköping Studies in Science and Technology. Dissertation No. 261, Linköping University, Sweden.

Glad, S. T. (1990). Differential algebraic modelling of nonlinear systems. In Realization and modelling in system theory, MTNS’89 (Vol. 1, pp. 97–105). Basel: Birkhäuser.

Joly-Blanchard, G., & Denis-Vidal, L. (1998). Some remarks about identifiability of controlled and uncontrolled nonlinear systems. Automatica, 34, 1151–1152.

Ljung, L., & Glad, S. T. (1994). On global identifiability for arbitrary model parameterizations. Automatica, 30(2), 265–276.

Miao, H., Dykes, C., Demeter, L. M., Cavenaugh, J., Park, S. Y., Perelson, A. S., & Wu, H. (2008). Modeling and estimation of kinetic parameters and replicative fitness of HIV-1 from flow-cytometry-based growth competition experiments. Bull. Math. Biol., 70, 1749–1771.

Miao, H., Dykes, C., Demeter, L. M., & Wu, H. (2009). Differential equation modeling of HIV viral fitness experiments: model identification, model selection, and multimodel inference. Biometrics, 65, 292–300.

Ollivier, F. (1990). Le problème de l’identifiabilité structurelle globale: étude théorique, méthodes effectives et bornes de complexité. Thèse de Doctorat en Science, École Polytéchnique, Paris, France.

Perelson, A. S., & Nelson, P. W. (1999). Mathematical analysis of HIV-1 dynamics in vivo. SIAM Rev., 41, 3–44.

Pohjanpalo, H. (1978). System identifiability based on the power series expansion of the solution. Math. Biosci., 41, 21–33.

Ritt, J. F. (1950). Differential algebra. Providence: American Mathematical Society.

Saccomani, M. P., & Cobelli, C. (1993). A minimal input-output configuration for a priori identifiability of a compartmental model of leucine metabolism. IEEE Trans. Biomed. Eng., 40, 797–803.

Saccomani, M. P., Audoly, S., & D’Angiò, L. (2003). Parameter identifiability of nonlinear systems: the role of initial conditions. Automatica, 39, 619–632.

Saccomani, M. P., Audoly, S., Bellu, G., & D’Angiò, L. (2010). Testing global identifiability of biological and biomedical models with the DAISY software. Comput. Biol. Med., 40, 402–407.

Verdière, N., Denis-Vidal, L., Joly-Blanchard, G., & Domurado, D. (2005). Identifiability and estimation of pharmacokinetic parameters for the ligands of the macrophage mannose receptor. Int. J. Appl. Math. Comput. Sci., 15(4), 517–526.

Walter, E., & Lecourtier, Y. (1992). Global approaches to identifiability testing for linear and nonlinear state space models. Math. Comput. Simul., 24, 472–482.

Wodarz, D. (2001). Helper-dependent vs. helper-independent CTL responses in HIV infections: Implications for drug therapy and resistance. J. Theor. Biol., 213, 447–459.

Wu, H., Zhu, H., Miao, H., & Perelson, A. S. (2008). Parameter identifiability and estimation of HIV/AIDS dynamic models. Bull. Math. Biol., 70, 785–799.

Xia, X., & Moog, C. H. (2003). Identifiability of nonlinear systems with application to HIV/AIDS models. IEEE Trans. Autom. Control, 48(2), 330–336.

Zurakowski, R., & Teel, A. R. (2006). A model predictive control based scheduling method for HIV therapy. J. Theor. Biol., 238, 368–382.