An extension of a result of Lehmer on numbers coprime to n

The Ramanujan Journal - Tập 16 - Trang 59-71 - 2008
P. Codecà1, M. Nair2
1Dipartimento di Matematica, Università di Ferrara, Ferrara, Italy
2Department of Mathematics, University of Glasgow, Glasgow, UK

Tóm tắt

For squarefree N and x∈R, define $$\Delta(x,N)=\sum_{\stackrel{\scriptstyle n\leq xN}{(n,N)=1}}1-x\varphi(N).$$ In the special case when N is composed of primes $p,p\equiv-1\ (\mathrm{mod}\>q)$ with q>1, Lehmer evaluated $\Delta(\frac{a}{q},N)$ for any a, 1≤aq)$ where r is any variable residue modulo q of order congruent to 2 modulo 4. This yields new examples of N for which Δ(N)=sup  x |Δ(x,N)| satisfies Δ(N)≫2ω(N).

Tài liệu tham khảo

Codecà, P., Nair, M.: Extremal values of \(\Delta(x,N)=\sum_{\stackrel{n\leq xN}{\mbox{\tiny$(n,N)=1$}}}1-x\varphi(N)\) . Can. Math. Bull. 41(3), 335–347 (1998) Codecà, P., Nair, M.: Links between \(\Delta(x,N)=\sum_{\stackrel{n\leq xN}{\mbox{\tiny$(n,N)=1$}}}1-x\varphi(N)\) and character sums. Boll. Unione Mat. Ital. 6(8), 509–516 (2003) Codecà, P., Nair, M.: The lesser-known Δ-function in number theory. Am. Math. Mon. 112(2), 131–140 (2005) Erdös, P.: On a problem in elementary number theory. Math. Stud. XII, 32–33 (1949) Lehmer, D.H.: The distribution of totatives. Can. J. Math. 7, 347–357 (1955) Vijayaraghavan, T.: On a problem in elementary number theory. J. Indian Math. Soc. 15, 51–56 (1951) Washington, L.C.: Introduction to Cyclotomic Fields. Springer, New York (1982)