Transition Probability Matrices for Flexible Pavement Deterioration Models with Half-Year Cycle Time

International Journal of Civil Engineering - Tập 16 - Trang 1045-1056 - 2017
Heriberto Pérez-Acebo1, Sergiu Bejan2, Hernán Gonzalo-Orden3
1Mechanical Engineering Department, University of the Basque Country UPV/EHU, Bilbao, Spain
2Department of Roads, Materials and Machines for Construction, Technical University of Moldova, Chişinău, Republic of Moldova
3Civil Engineering Department, University of Burgos, Burgos, Spain

Tóm tắt

Pavement performance models, a vital part of pavement management systems and life-cycle analysis, are generally divided into deterministic and probabilistic ones. Among probabilistic models, the Markov chains are attracting great attention. Transition probability matrices were developed for flexible pavement road network of the Republic of Moldova using the IRI values collected twice a year, in spring and in autumn, from 2013 to 2015. Consequently, a half-year cycle time was established. The aim of this paper is to demonstrate that it is feasible to develop transition probability matrices for an entire flexible pavement network using data from a short data collection period, and simultaneously carrying out maintenance and rehabilitation activities, if some assumptions are made. Results showed that road sections can drop two or three states in one cycle time, not only remaining in the same state or evolving to the next one, as it is usually assumed in pavement performance modeling. These models are proposed for countries in similar circumstances; a network with no new roads constructed in last decades, pavements maintained or rehabilitated in different moments during their service life, invalid or useless pavement condition data from previous years and unknown pavement structure in most of the sections.

Tài liệu tham khảo

Si W, Ma B, Li N, Ren JP, Wang HN (2014) Reliability-based assessment of deterioration performance to asphalt pavement under freeze-thaw cycles in cold regions. Constr Build Mater 68:572–579 Khodaii A, Fallah S (2009) Effects of geosynthetic reinforcement on the propagation of reflection cracking in asphalt overlays. Int J Civ Eng 7(2):131–140 Tang T, Zha X, Xiao Q, Chen Y (2016) Laboratory characterization and field validation of ROADMESH-Reinforced asphalt pavement in China. Int J Civ Eng. doi:10.1007/s40999-016-0128-9 Yeo H, Yoon Y, Madanat S (2013) Algorithms for bottom-up maintenance optimisation for heterogeneous infrastructure systems. Struct Infrastruct Eng 9:317–328 Santos J, Ferreira A, Flintsch G (2017) An adaptive hybrid genetic algorithm for pavement management. Int J Pavement Eng. doi:10.1080/10298436.2017.1293260 Koo DD, Jung Y, Campos U (2017) Performance analysis and metrics development for roadway striping operation using telematics technology. Int J Civ Eng. doi:10.1007/s40999-017-0198-3 Hassan R, Lin O, Thananjeyan A (2017) A comparison between three approaches for modelling deterioration of five pavement surfaces. Int J Pavement Eng 18(1):26–35 Bandara N, Gunaratne M (2001) Current and future pavement maintenance prioritization based on rapid visual condition evaluation. J Transp Eng 127:116–123 American Association of State Highway and Transportation Officials (AASHTO) (2012) Pavement management guide, 2nd edn. AASHTO, Washington DC Soncim SP, de Oliveira ICS, Santos FB, Oliveira CADS (2017) Development of probabilistic models for predicting roughness in asphalt pavement. Road Mater Pavement Des. doi:10.1080/14680629.2017.1304233 Hassan R, Lin O, Thananjeyan A (2017) Probabilistic modelling of flexible pavement distresses for network management. Int J Pavement Eng 18(3):216–227 Khasawneh MA (2017) Laboratory study on the frictional properties of HMA specimens using a newly developed asphalt polisher. Int J Civ Eng. doi:10.1007/s40999-017-0186-7 Abaza KA (2016) Back-calculation of transition probabilities for Markovian-based pavement performance prediction models. Int J Pavement Eng 17(3):253–264 Alaswadko N, Hassan R, Meyer D, Mohammed B (2017) Modelling roughness progression of sealed granular pavements: a new approach. Int J Pavement Eng. doi:10.1080/10298436.2017.1283689 Ampadu SIK, Addison FK (2017) A comparison between the life cycle cost of gravel and of bituminous surfacing options for feeder roads in Ghana. Int J Pavement Eng 18(3):228–235 Jorge D, Ferreira A (2012) Road network pavement maintenance optimization using the HDM-4 pavement performance prediction models. Int J Pavement Eng 13:39–51 Abaza KA (2017) Empirical Markovian-based models for rehabilitated pavement performance used in a cycle analysis approach. Struct Infrastruct Eng 13(5):625–636 Li N, Haas R, Xie WC (1997) Development of a new asphalt pavement performance prediction model. Can J Civ Eng 24:547–559 Amin MSR, Amador-Jiménez LE (2016) Pavement management with dynamic traffic and artificial neural network: a case study of Montreal. Can J Civ Eng 43:241–251 Ahammed MA, Tighe SL (2008) Concrete pavement surface textures and multivariables frictional performance analysis: a North American case study. Can J Civ Eng 35:727–738 Golroo A, Tighe S (2009) Use of soft computing applications to model pervious concrete pavement condition in cold climates. J Transp Eng 135:791–800 Hong F (2014) Asphalt pavement overlay service life reliability assessment based on non-destructive technologies. Struct Infrastruct Eng 10:767–776 Abaza KA (2016) Simplified staged-homogenous Markov model for flexible pavement performance prediction. Road Mater Pavement Des 17:365–381 Wang K, Zaniewski J, Way G (1994) Probabilistic behavior of pavements. J Transp Eng 120:358–375 Chua K, Monismith C (1994) Mechanistic model for transition probabilities. J Transp Eng 120:144–159 Ortiz-García J, Costello S, Snaith M (2006) Derivation of transition probability matrices for pavement deterioration modelling. J Transp Eng 132:141–161 Adedimila AS, Olutaiwo AO, Kehinde O (2009) Markovian probabilistic pavement performance prediction models for a developing country. J Eng Appl Sci 4:13–26 Xu J, Yang K, Shao YM (2017) Ride comfort of passenger cars on two-lane mountain highways based on tri-axial acceleration from field driving tests. Int J Civ Eng. doi:10.1007/s40999-016-0132-0 Sayers MW, Gillespie TD, Paterson WD (1986) Guidelines for the conduct and calibration of road roughness measurements. World Bank Technical Paper 46, The World Bank, Washington DC Sayers MW (1995) On the calculation of IRI from longitudinal road profile. Transp Res Rec 1501:1–12 Prozzi J, Madanat S (2004) Development of pavement performance models by combining experimental and field data. J Infrastruct Syst 10:9–22 Wu Z, Yang X, Zhang ZJ (2013) Evaluation of MEPDG flexible pavement design using pavement management system data: Louisiana experience. Int J Pavement Eng 14:674–685 Isaacson DL, Madsen RW (1976) Markov chains: theory and applications. Wiley, New York Hillier FS, Lieberman GJ (1990) Introduction to operations research, 5th edn. McGraw-Hill, New York Kerali HR, Snaith MS (1992) NETCOM: the TRL visual condition model for road networks. Contractor Report No. 921, Transport Research Laboratory, Crowthorne Abaza KA, Ashur SA, Al-Khatib IA (2004) Integrated pavement management system with a Markovian prediction model. J Transp Eng 130:24–33 Butt AA, Shanin MY, Feighan KJ, Carpenter SH (1987) Pavement performance prediction model using the Markov process. Transp Res Rec 1123:12–19 Ministerul Dezvoltarii Regionale şi Constructiilor (2015) Proiectarea drumurilor publice. NCM D.02.01:2015. Ministerul Dezvoltarii Regionale şi Constructiilor, Chisinau Ministerul Transporturilor şi Infrastructurii Drumurilor (2015) Raport privind activitatea Î.S. “Administraţia de Stat a Drumurilor” în anul 2015. Ministerul Transporturilor şi Infrastructurii Drumurilor, Chisinau Ministerul Dezvoltarii Regionale şi Constructiilor (2014) Dimensionarea Structurilor rutiere suple. CP D.02.08-2014. Ministerul Dezvoltarii Regionale şi Constructiilor, Chisinau Odoki JB, Kerali HGR (2000) Analytical framework and model descriptions. Highway Development & Management (HDM-4) Volume 4. The World Road Association (PIARC). Washington DC Perera RW, Kohn SD (2002) Issues in pavement smoothness: a summary report. NCHRP Web Document 42. Contractor’s Final Report. Transportation Research Board, National Research Council, Washington DC