Artificial Cognitive Systems Applied in Executive Function Stimulation and Rehabilitation Programs: A Systematic Review
Tóm tắt
This article presents a systematic review of studies on cognitive training programs based on artificial cognitive systems and digital technologies and their effect on executive functions. The aim has been to identify which populations have been studied, the characteristics of the implemented programs, the types of implemented cognitive systems and digital technologies, the evaluated executive functions, and the key findings of these studies. The review has been carried out following the PRISMA protocol; five databases have been selected from which 1889 records were extracted. The articles were filtered following established criteria, to give a final selection of 264 articles that have been used for the purposes of this study in the analysis phase. The findings showed that the most studied populations were school-age children and the elderly. The most studied executive functions were working memory and attentional processes, followed by inhibitory control and processing speed. Many programs were commercial, customizable, gamified, and based on classic tasks. Some more recent initiatives have begun to incorporate user-machine interfaces, robotics, and virtual reality, although studies on their effects remain scarce. The studies recognize multiple benefits of computerized neuropsychological stimulation and rehabilitation programs for executive functions in different age groups, but there is a lack of studies in specific population sectors and with more rigorous research designs.
Tài liệu tham khảo
Bogdanova, Y.; Yee, M.K.; Ho, V.T.; Cicerone, K.D.: Computerized cognitive rehabilitation of attention and executive function in acquired brain injury: a systematic review. J. Head Trauma Rehabil. 31(6), 419–433 (2016). https://doi.org/10.1097/HTR.0000000000000203
Harvey, P.D.; McGurk, S.R.; Mahncke, H.; Wykes, T.: Controversies in computerized cognitive training. Biol. Psychiatry. Cogn. Neurosci. Neuroimaging. 3(11), 907–915 (2018). https://doi.org/10.1016/j.bpsc.2018.06.008
Motter, J.N.; Pimontel, M.A.; Rindskopf, D.; Devanand, D.P.; Doraiswamy, P.M.; Sneed, J.R.: Computerized cognitive training and functional recovery in major depressive disorder: a meta-analysis. J. Affect. Disord. 189, 184–191 (2016). https://doi.org/10.1016/j.jad.2015.09.022
Niemeijer, M.; Sværke, K.W.; Christensen, H.K.: The effects of computer based cognitive rehabilitation in stroke patients with working memory impairment: a systematic review. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 29(12), 105265 (2020). https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105265
Pham, K.T.; Nabizadeh, A.; Selek, S.: Artificial intelligence and chatbots in psychiatry. Psychiatry Q. 93(1), 249–253 (2022). https://doi.org/10.1007/s11126-022-09973-8
Roth, C.B.; Papassotiropoulos, A.; Brühl, A.B.; Lang, U.E.; Huber, C.G.: Psychiatry in the digital age: A blessing or a curse? Int. J. Environ. Res. Public Health 18(16), 8302 (2021). https://doi.org/10.3390/ijerph18168302
Sonuga-Barke, E.; Brandeis, D.; Holtmann, M.; Cortese, S.: Computer-based cognitive training for ADHD: a review of current evidence. Child Adolesc. Psychiatr. Clin. N. Am. 23(4), 807–824 (2014). https://doi.org/10.1016/j.chc.2014.05.009
Vajawat, B.; Varshney, P.; Banerjee, D.: Digital gaming interventions in psychiatry: evidence, applications and challenges. Psychiatry Res. 295, 113585 (2021). https://doi.org/10.1016/j.psychres.2020.113585
Webb, S.L.; Loh, V.; Lampit, A.; Bateman, J.E.; Birney, D.P.: Meta-analysis of the effects of computerized cognitive training on executive functions: a cross-disciplinary taxonomy for classifying outcome cognitive factors. Neuropsychol. Rev. 28(2), 232–250 (2018). https://doi.org/10.1007/s11065-018-9374-8
Hramov, A.; Maksimenko, V.; Pisarchik, A.: Physical principles of brain-computer interfaces and their applications for rehabilitation, robotics and control of human brain states. Phys. Rep. (2021). https://doi.org/10.1016/j.physrep.2021.03.002
Kletzel, S.L.; Sood, P.; Negm, A.; Heyn, P.C.; Krishnan, S.; Machtinger, J.; Hu, X.; Devos, H.: Effectiveness of brain gaming in older adults with cognitive impairments: a systematic review and meta-analysis. J. Am. Med. Direct. Assoc. 22(11), 2281–2288 (2021)
Goldstein, S.; Naglieri, J.A.; Princiotta, D.; Otero, T.M.: Introduction: a history of executive functioning. In: Goldstein, S.; Naglieri, J.A. (Eds.) Handbook of Executive Functioning. Springer (2013)
Blair, C.; Ursache, A.: A bidirectional model of executive functions and self-regulation. In: Vohs, K.D.; Baumeister, R.F. (Eds.) Handbook of Self-regulation: Research, Theory, and Applications, pp. 300–320. Guilford Press (2011)
Miller, E.; Cohen, J.: An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001). https://doi.org/10.1146/annurev.neuro.24.1.167
Baddeley, A.D.: Working memory. Curr. Biol. 20(4), 136–140 (2010)
Petersen, S.E.; Posner, M.I.: The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 35, 73–89 (2012). https://doi.org/10.1146/annurev-neuro-062111-150525
Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.Y.; Wager, T.D.: The unity and diversity of executive functions and their contributions to complex ‘“frontal lobe”’ tasks: a latent variable analysis. Cogn. Psychol. 41, 49–100 (2000). https://doi.org/10.1006/cogp.1999.0734
Barkley, R.: ExecutiveFunctions: What they Are, How they Work, and Why they Evolved. The Guilford Press (2012)
Zelazo, P.D.; Qu, L.; Muller, U.: Hot and cool aspects of executive function: relations in early development. In: Schneider, W.; Schumann, R.; Sodian, B. (Eds.) Young Children’s Cognitive Development: Interrelationships Among Executive Junctioning, Working Memory, Verbal Ability, and Theory of Mind, pp. 71–93. Lawrence Eribaum Associates Publishers (2004)
Portellano, J.A.: Intervención neuropsicológica de las funciones ejecutivas. Neuroeducación y funciones ejecutivas, Editorial CEPE (2018)
Trapaga-Ortega, C.M.: Introducción a la estimulación y rehabilitación de las funciones cognitivas. De la psicología cognitiva a la neuropsicología, Manual modern (2018)
Guerrero, G.; García, A.: Plataformas de rehabilitación neuropsicológica: estado actual y líneas de trabajo. Neurologia (2015). https://doi.org/10.1016/j.nrl.2013.06.015
Lubrini, G; Periañez, J.A., Ríos-Lago, M.: Introducción a la estimulación cognitiva y la rehabilitación neuropsicológica. In: Muñoz, E. (Coord) Estimulación cognitiva y rehabilitación neuropsicológica, Editorial UOC (2009)
Liu, Q.; Zhu, X.; Ziegler, A.; Shi, J.: The effects of inhibitory control training for preschoolers on reasoning ability and neural activity. Scientifics. 5, 1–10 (2015). https://doi.org/10.1038/srep14200
Schubert, T.; Strobach, T.; Karbach, J.: New directions in cognitive training: on methods, transfer, and application. Psychol. Res. 78(6), 749–755 (2014). https://doi.org/10.1007/s00426-014-0619-8
Ghavidel, F.; Fadardi, J.S.; Gatto, N.M.: Feasibility of using a computer-assisted working memory training program for healthy older women. Cogn. Process. 21, 383–390 (2020). https://doi.org/10.1007/s10339-020-00975-7
Peng, J.; Mo, L.; Huang, P.; Zhou, Y.: The effects of working memory training on improving fluid intelligence of children during early childhood. Cogn. Dev. 43, 224–234 (2017). https://doi.org/10.1016/j.cogdev.2017.05.006
van Houdt, C.A.; van Wassenaer-Leemhuis, A.G.; Oosterlaan, J.; Königs, M.; Koopman-Esseboom, C.; Laarman, A.; van Kaam, A.H.; Aarnoudse-Moens, C.: Executive function training in very preterm children: a randomized controlled trial. Eur. Child Adolesc. Psychiatry. 30(5), 785–797 (2020). https://doi.org/10.1007/s00787-020-01561-0
Dovis, S.; Maric, M.; Prins, P.J., et al.: Does executive function capacity moderate the outcome of executive function training in children with ADHD? ADHD Atten. Def. Hyp. Disord. 11, 445–460 (2019). https://doi.org/10.1007/s12402-019-00308-5
Papanastasiou, G.; Drigas, A.; Skianis, C.; Lytras, M.D.: Brain computer interface based applications for training and rehabilitation of students with neurodevelopmental disorders. A literature review. Heliyon. 6, e04250 (2020)
Hudak, E.M.; Edwards, J.D.; Andel, R.: The comparative effects of two cognitive interventions among older adults residing in retirement communities. J. Cogn. Enhanc. 3, 349–358 (2019). https://doi.org/10.1007/s41465-019-00125-8
Parre, M.D.; Sujatha, B.: Novel human-centered robotics: towards an automated process for neurorehabilitation. Neurol. Res. Int. (2021). https://doi.org/10.1155/2021/6690715
Gamito, P.; Oliveira, J.; Alves, C.; Santos, N.; Coelho, C.; Brito, R.: Virtual reality-based cognitive stimulation to improve cognitive functioning in community elderly: a controlled study. Cyberpsychol. Behav. Soc. Netw. 23(3), 150–156 (2020). https://doi.org/10.1089/cyber.2019.0271
Buccellato, K.H.; Nordstrom, M.; Murphy, J.M.; Burdea, G.C.; Polistico, K.; House, G.; Kim, N.; Grampurohit, N.; Sorensen, J.; Isaacson, B.M.; Pasquina, P.F.: A randomized feasibility trial of a novel, integrative, and intensive virtual rehabilitation program for service members post-acquired brain injury. Mil. Med. 185(1–2), e203–e211 (2020). https://doi.org/10.1093/milmed/usz150
Coyle, H.; Traynor, V.; Solowij, N.: Computerized and virtual reality cognitive training for individuals at high risk of cognitive decline: systematic review of the literature. Am. J. Geriatric Psychiatry Off. J. Am. Assoc. Geriatric Psychiatry. 23(4), 335–359 (2015). https://doi.org/10.1016/j.jagp.2014.04.009
Chen, X.; Liu, F.; Lin, S.; Yu, L.; Lin, R.: Effects of virtual reality rehabilitation training on cognitive function and activities of daily living of patients with post-stroke cognitive impairment: a systematic review and meta-analysis. Arch. Phys. Med. Rehab. S0003-9993(22), 00337–9 (2022). https://doi.org/10.1016/j.apmr.2022.03.012
Stroppa, F.; Sarac, M.; Marcheschi, S.; Loconsole, C.; Sotgiu, E.; Solazzi, M.; Buongiorno, D.; Frisoli, A.: Real-time 3D tracker in robot-based neurorehabilitation. Comput. Vis. Pattern Recogn. (2018). https://doi.org/10.1016/B978-0-12-813445-0.00003-4
Minder, F.; Zuberer, A.; Brandeis, D.; Drechsler, R.: Informant-related effects of neurofeedback and cognitive training in children with ADHD including a waiting control phase: a randomized-controlled trial. Eur. Child Adolesc. Psychiatry 27, 1055–1066 (2018). https://doi.org/10.1007/s00787-018-1116-1
Saleem, G.T.; Crasta, J.E.; Slomine, B.S.; Cantarero, G.L.; Suskauer, S.J.: Transcranial direct current stimulation in pediatric motor disorders: a systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 100(4), 724–738 (2019). https://doi.org/10.1016/j.apmr.2018.10.011
Manenti, R.; Cotelli, M.S.; Cobelli, C.; Gobbi, E.; Brambilla, M.; Rusich, D.; Alberici, A.; Padovani, A.; Borroni, B.; Cotelli, M.: Transcranial direct current stimulation combined with cognitive training for the treatment of Parkinson Disease: a randomized, placebo-controlled study. Brain Stimul. 11(6), 1251–1262 (2018). https://doi.org/10.1016/j.brs.2018.07.046
Homer, B; Ober, T. M. Flynn, R.: Children and adolescents' development of executive functions in digital contexts. Proceedings of the Technology, Mind, and Society Conference, TechMindSociety. Association for Computing Machinery. (2018). https://doi.org/10.1145/3183654.3183696
Pasqualotto, A.; Mazzoni, N.; Bentenuto, A.; Mulè, A.; Benso, F.; Venuti, P.: Effects of cognitive training programs on executive function in children and adolescents with autism spectrum disorder: a systematic review. Brain Sci. 11(10), 1280 (2021). https://doi.org/10.3390/brainsci11101280
van de Ven, R.M.; Murre, J.M.; Veltman, D.J.; Schmand, B.A.: Computer-based cognitive training for executive functions after stroke: a systematic review. Front. Hum. Neurosci. (2016). https://doi.org/10.3389/fnhum.2016.00150
Ge, S.; Zhu, Z.; Wu, B., et al.: Technology-based cognitive training and rehabilitation interventions for individuals with mild cognitive impairment: a systematic review. BMC Geriatr. 18, 213 (2018). https://doi.org/10.1186/s12877-018-0893-1
Owen, A.M.; Hampshire, A.; Grahn, J.A.: Putting brain training to the test. Nature 465, 775–778 (2010). https://doi.org/10.1038/nature09042
Lakes, K.D.; Cibrian, F.L.; Schuck, S.E.B.; Nelson, M.; Hayes, G.R.: Digital health interventions for youth with ADHD: a mapping review. Comput. Hum. Behav. Rep. (2022). https://doi.org/10.1016/j.chbr.2022.100174
Cibrian, F.L.; Lakes, K.D.; Schuck, S.E.B.; Hayes, G.R.: The potential for emerging technologies to support self-regulation in children with ADHD: a literature review. Int. J. Child-Comput. Interact. (2022). https://doi.org/10.1016/j.ijcci.2021.100421
Kirk, H.E.; Gray, K.; Riby, D.M.; Cornish, K.M.: Cognitive training as a resolution for early executive function difficulties in children with intellectual disabilities. Res. Dev. Disabil. 38, 145–160 (2015). https://doi.org/10.1016/j.ridd.2014.12.026
Luis-Ruiz, S.; Caldú, X.; Sánchez-Castañeda, C.; Pueyo, R.; Garolera, M.; Jurado, M.Á.: Is cognitive training an effective tool for improving cognitive function and real-life behaviour in healthy children and adolescents? A systematic review. Neurosci. Biobehav. Rev. 116, 268–282 (2020). https://doi.org/10.1016/j.neubiorev.2020.06.019
Slattery, E.J.; O’Callaghan, E.; Ryan, P.; Fortune, D.G.; McAvinue, L.P.: Popular interventions to enhance sustained attention in children and adolescents: a critical systematic review. Neurosci. Biobehav. Rev. 137, 104633 (2022). https://doi.org/10.1016/j.neubiorev.2022.104633
Jahn, F.S.; Skovbye, M.; Obenhausen, K.; Jespersen, A.E.; Miskowiak, K.W.: Cognitive training with fully immersive virtual reality in patients with neurological and psychiatric disorders: A systematic review of randomized controlled trials. Psychiatry Res. 300, 113928 (2021). https://doi.org/10.1016/j.psychres.2021.113928
Bell, I.; Pot-Kolder, R.; Wood, S.J.; Nelson, B.; Acevedo, N.; Stainton, A.; Nicol, K.; Kean, J.; Bryce, S.; Bartholomeusz, C.F.; Watson, A.; Schwartz, O.; Daglas-Georgiou, R.; Walton, C.C.; Martin, D.; Simmons, M.; Zbukvic, I.; Thompson, A.; Nicholas, J.; Alvarez-Jimenez, M.; Allott, K.: Digital technology for addressing cognitive impairment in recent-onset psychosis: a perspective. Schizophrenia Res. Cogn. 28, 100247 (2022). https://doi.org/10.1016/j.scog.2022.100247
Žepič, M.Z.: Improvement of cognitive abilities of older employees with computerized cognitive training (CCT). IFAC-PapersOnLine. 54(13), 651–656 (2021). https://doi.org/10.1016/j.ifacol.2021.10.525
Nguyen, L.; Murphy, K.; Andrews, G.: Cognitive and neural plasticity in old age: A systematic review of evidence from executive functions cognitive training. Ageing Res. Rev. 53, 100912 (2019). https://doi.org/10.1016/j.arr.2019.100912
Yen, H.Y.; Chiu, H.L.: Virtual reality exergames for improving older adults’ cognition and depression: a systematic review and meta-analysis of randomized control trials. J. Am. Med. Dir. Assoc. 22(5), 995–1002 (2021). https://doi.org/10.1016/j.jamda.2021.03.009
Moreno, B.; Muñoz, M.; Cuellar, J.; Domancic, S.; Villanueva, J.: Revisiones Sistemáticas: definición y nociones básicas. Revista clínica de periodoncia, implantología y rehabilitación oral. 11(3), 184–186 (2018)
Higgins, J.P.T., Green, S.: Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0, The Cochrane Collaboration (2011).
Brereton, P.; Kitchenham, B.A.; Budgen, D.; Turner, M.; Khalil, M.: Lessons from applying the systematic literature review process within the software engineering domain. J. Syst. Softw. 80(4), 571–583 (2007). https://doi.org/10.1016/j.jss.2006.07.009
Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.: The PRISMA group: preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6(6), e1000097 (2009)
Uman, L.S.: Systematic reviews and meta-analyses. J. Can. Acad. Child Adolescent Psychiatry. Journal de l’Académie canadienne de psychiatrie de l’enfant et de l’adolescent 20(1), 57–59 (2011)
O'Connor, D.; Green, S., Higgins, F.J.: Defining the Review Question and Developing Criteria for Including Studies. In: Higgins, J.P., Green, S. Cochrane Handbook for Systematic Reviews of Interventions (2008). https://doi.org/10.1002/9780470712184.ch5
Anderson, P.: Assessment and development of executive function during childhood. Child Neuropsychol. 8(2), 71–82 (2002). https://doi.org/10.1076/chin.8.2.71.8724
Brown, T.E.: Attention Deficit Disorder: The Unfocused Mind in Children and Adults. Yale University Press (2005)
Di Lieto, M.C.; Pecini, C.; Castro, E.; Inguaggiato, E.; Cecchi, F.; Paolo, D.; Cioni, G.; Sgandurra, G.: Empowering executive functions in 5- and 6-year-old typically developing children through educational robotics: an RCT study. Front. Psychol. 10, 3084 (2020). https://doi.org/10.3389/fpsyg.2019.03084
Abt, C.: Serious Game. University Press of América (1987)
Gade, M.; Zoelch, C.; Seitz-Stein, K.: Training of visual-spatial working memory in preschool children. Adv. Cogn. Psychol. 13(2), 177–187 (2017). https://doi.org/10.5709/acp-0217-7
Liu, Q.; Zhu, X.; Ziegler, A., et al.: The effects of inhibitory control training for preschoolers on reasoning ability and neural activity. Sci. Rep. 5, 14200 (2015). https://doi.org/10.1038/srep14200
Gray, S.I.; Robertson, J.; Manches, A.; Rajendran, G.: BrainQuest: the use of motivational design theories to create a cognitive training game supporting hot executive function. Int. J. Hum Comput Stud. 127, 124–149 (2019). https://doi.org/10.1016/j.ijhcs.2018.08.004
Wang, C.; Jaeggi, S.; Yang, L.; Zhang, T.; He, X.; Buschkuehl, M.; Zhang, Q.: Narrowing the achievement gap in low-achieving children by targeted executive function training. J. Appl. Dev. Psychol. 63, 87–95 (2019). https://doi.org/10.1016/j.appdev.2019.06.002
Kavanaugh, B.C.; Tuncer, O.; Wexler, B.: Measuring and improving executive functioning in the classroom. J. Cogn. Enhancement. (2018). https://doi.org/10.1007/s41465-018-0095-y
Fernández-Molina, M.; Trella, M.; Barros, B.: Experiences with tasks supported by a cognitive e-learning system in preschool: modelling and training on working memory and attentional control. Int. J. Hum. Comput. Stud. 75, 35–51 (2015). https://doi.org/10.1016/j.ijhcs.2014.11.001
Jones, J.S.; Milton, F.; Mostazir, M.; Adlam, A.R.: The academic outcomes of working memory and metacognitive strategy training in children: a double-blind randomized controlled trial. Dev. Sci. 23(4), e12870 (2020). https://doi.org/10.1111/desc.12870
Zhang, H.; Chang, L.; Chen, X.; Ma, L.; Zhou, R.: Working memory updating training improves mathematics performance in middle school students with learning difficulties. Front. Hum. Neurosci. 12, 154 (2018). https://doi.org/10.3389/fnhum.2018.00154
Roberts, G.; Quach, J.; Spencer-Smith, M.; Anderson, P.J.; Gathercole, S.; Gold, L.; Sia, K.L.; Mensah, F.; Rickards, F.; Ainley, J.; Wake, M.: Academic outcomes 2 years after working memory training for children with low working memory: a randomized clinical trial. JAMA Pediatr. 170(5), e154568 (2016). https://doi.org/10.1001/jamapediatrics.2015.4568
Studer-Luethi, B.; Bauer, C.; Perrig, W.J.: Working memory training in children: effectiveness depends on temperament. Mem. Cogn. 44, 171–186 (2016). https://doi.org/10.3758/s13421-015-0548-9
Bamidis, P.D.; Fissler, P.; Papageorgiou, S.G.; Zilidou, V.; Konstantinidis, E.I.; Billis, A.S.; Romanopoulou, E.; Karagianni, M.; Beratis, I.; Tsapanou, A.; Tsilikopoulou, G.; Grigoriadou, E.; Ladas, A.; Kyrillidou, A.; Tsolaki, A.; Frantzidis, C.; Sidiropoulos, E.; Siountas, A.; Matsi, S.; Papatriantafyllou, J.; Kolassa, I.T.: Gains in cognition through combined cognitive and physical training: the role of training dosage and severity of neurocognitive disorder. Front. Aging Neurosci. 7, 152 (2015). https://doi.org/10.3389/fnagi.2015.00152
Żelechowska, D.; Sarzyńska, J.; Nęcka, E.: Working memory training for schoolchildren improves working memory, with no transfer effects on intelligence. J. Intell. 5(4), 36 (2017). https://doi.org/10.3390/jintelligence5040036
Nelwan, M.; Vissers, C.; Kroesbergen, E.H.: Coaching positively influences the effects of working memory training on visual working memory as well as mathematical ability. Neuropsychologia 113, 140–149 (2018). https://doi.org/10.1016/j.neuropsychologia.2018.04.002
Castellar, E.; All, A.; Marez, L.; Looy, J.: Cognitive abilities, digital games and arithmetic performance enhancement: a study comparing the effects of a math game and paper exercises. Comput. Educ. (2015). https://doi.org/10.1016/j.compedu.2014.12.021
Rossignoli, T.; Quiros, M.; Perez, E.; González-Marqués, J.: Schoolchildren’s compensatory strategies and skills in relation to attention and executive function app training. Front. Psychol. 10, 2332 (2019). https://doi.org/10.3389/fpsyg.2019.02332
Sánchez, N.; Castillo, A.; López, J.A.; Pina, V.; Puga, J.L.; Campoy, G.; González-Salinas, C.; Fuentes, L.J.: Computer-based training in math and working memory improves cognitive skills and academic achievement in primary school children: behavioral results. Front. Psychol. 8, 2327 (2018). https://doi.org/10.3389/fpsyg.2017.02327
Wilkinson, H.R.; Smid, C.; Morris, S., et al.: Domain-specific inhibitory control training to improve children’s learning of counterintuitive concepts in mathematics and science. J. Cogn. Enhanc. 4, 296–314 (2020). https://doi.org/10.1007/s41465-019-00161-4
Etherton, J.L.; Oberle, C.D.; Rhoton, J., et al.: Effects of Cogmed working memory training on cognitive performance. Psychol. Res. 83, 1506–1518 (2019). https://doi.org/10.1007/s00426-018-1012-9
Boivin, M.J.; Nakasujja, N.; Sikorskii, A.; Ruiseñor-Escudero, H.; Familiar-Lopez, I.; Walhof, K.; van der Lugt, E.M.; Opoka, R.O.; Giordani, B.: Neuropsychological benefits of computerized cognitive rehabilitation training in Ugandan children surviving severe malaria: a randomized controlled trial. Brain Res. Bull. 145, 117–128 (2019). https://doi.org/10.1016/j.brainresbull.2018.03.002
Weissheimer, J.; Fujii, R.C.; Souza, J.G.: The effects of cognitive training on executive functions and reading in typically-developing children with varied socioeconomic status in Brazil. Ilha do Desterro: A J. Engl. Lang. Lit. Engl. Cult. Stud. 72(3), 85–100 (2019). https://doi.org/10.5007/2175-8026.2019v72n3p85
Farias, A.C.; Cordeiro, M.L.; Felden, E.P.; Bara, T.S.; Benko, C.R.; Coutinho, D.; Martins, L.F.; Ferreira, R.T.; McCracken, J.T.: Attention-memory training yields behavioral and academic improvements in children diagnosed with attention-deficit hyperactivity disorder comorbid with a learning disorder. Neuropsychiatr. Dis. Treat. 13, 1761–1769 (2017). https://doi.org/10.2147/NDT.S136663
Zhao, X.; Jia, L.: Training and transfer effects of interference control training in children and young adults. Psychol. Res. 83(7), 1519–1530 (2019). https://doi.org/10.1007/s00426-018-1007-6
Caviola, S.; Gerotto, G.; Mammarella, I.C.: Computer-based training for improving mental calculation in third- and fifth-graders. Acta Psychol. 171, 118–127 (2016). https://doi.org/10.1016/j.actpsy.2016.10.005
Stanford, E.; Durrleman, S.; Delage, H.: The effect of working memory training on a clinical marker of french-speaking children with developmental language disorder. Am. J. Speech Lang. Pathol. 28(4), 1388–1410 (2019). https://doi.org/10.1044/2019_AJSLP-18-0238
Sánchez-Pérez, N.; Inuggi, A.; Castillo, A.; Campoy, G.; García-Santos, J.M.; González-Salinas, C.; Fuentes, L.J.: Computer-based cognitive training improves brain functional connectivity in the attentional networks: a study with primary school-aged children. Front. Behav. Neurosci. 13, 247 (2019). https://doi.org/10.3389/fnbeh.2019.00247
Wexler, B.; Iseli, M.; Leon, S., et al.: Cognitive priming and cognitive training: immediate and far transfer to academic skills in children. Sci. Rep. 6, 32859 (2016). https://doi.org/10.1038/srep32859
Söderqvist, S.; Bergman Nutley, S.: Working memory training is associated with long term attainments in math and reading. Front. Psychol. 6, 1711 (2015). https://doi.org/10.3389/fpsyg.2015.01711
Carlson-Green, B.; Puig, J.; Bendel, A.: Feasibility and efficacy of an extended trial of home-based working memory training for pediatric brain tumor survivors: a pilot study. Neuro-oncol. Pract. 42, 111–120 (2017). https://doi.org/10.1093/NOP/NPW015
Conklin, H.M.; Ashford, J.M.; Clark, K.N.; Martin-Elbahesh, K.; Hardy, K.K.; Merchant, T.E.; Ogg, R.J.; Jeha, S.; Huang, L.; Zhang, H.: Long-Term efficacy of computerized cognitive training among survivors of childhood cancer: a single-blind randomized controlled trial. J. Pediatr. Psychol. 42(2), 220–231 (2017). https://doi.org/10.1093/jpepsy/jsw057
Cox, L.E.; Ashford, J.M.; Clark, K.N.; Martin-Elbahesh, K.; Hardy, K.K.; Merchant, T.E.; Ogg, R.J.; Jeha, S.; Willard, V.W.; Huang, L.; Zhang, H.; Conklin, H.M.: Feasibility and acceptability of a remotely administered computerized intervention to address cognitive late effects among childhood cancer survivors. Neuro-oncol. Pract. 2(2), 78–87 (2015). https://doi.org/10.1093/nop/npu036
Simone, M.; Viterbo, R.G.; Margari, L.; Iaffaldano, P.: Computer-assisted rehabilitation of attention in pediatric multiple sclerosis and ADHD patients: a pilot trial. BMC Neurol. 18(1), 82 (2018). https://doi.org/10.1186/s12883-018-1087-3
Bomyea, J.; Stein, M.B.; Lang, A.J.: Interference control training for PTSD: a randomized controlled trial of a novel computer-based intervention. J. Anxiety Disord. 34, 33–42 (2015). https://doi.org/10.1016/j.janxdis.2015.05.010
Lee, H.J.; Espil, F.M.; Bauer, C.C.; Siwiec, S.G.; Woods, D.W.: Computerized response inhibition training for children with trichotillomania. Psychiatry Res. 262, 20–27 (2017). https://doi.org/10.1016/j.psychres.2017.12.070
Yoncheva, Y.N.; Hardy, K.K.; Lurie, D.J.; Somandepalli, K.; Yang, L.; Vezina, G.; Kadom, N.; Packer, R.J.; Milham, M.P.; Castellanos, F.X.; Acosta, M.T.: Computerized cognitive training for children with neurofibromatosis type 1: a pilot resting-state fMRI study. Psychiatry Res. Neuroimaging. 266, 53–58 (2017). https://doi.org/10.1016/j.pscychresns.2017.06.003
Jordan, L.; Siciliano, R.; Cole, D.; Lee, C.; Patel, N.; Murphy, L.; Markham, L.; Prussien, K.; Gindville, M.; Compas, B.: Cognitive training in children with hypoplastic left heart syndrome: a pilot randomized trial. Prog. Pediatr. Cardiol. (2019). https://doi.org/10.1016/j.ppedcard.2019.101185
Kirk, H.; Gray, K.; Ellis, K.; Taffe, J.; Cornish, K.: Impact of attention training on academic achievement, executive functioning, and behavior: a randomized controlled trial. Am. J. Intellect. Dev. Disabil. 122(2), 97–117 (2017). https://doi.org/10.1352/1944-7558-122.2.97
Spaniol, M.M.; Shalev, L.; Kossyvaki, L.; Mevorach, C.: Attention training in autism as a potential approach to improving academic performance: a school-based pilot study. J. Autism. Dev. Disord. 48(2), 592–610 (2018). https://doi.org/10.1007/s10803-017-3371-2
Benyakorn, S.; Calub, C.A.; Riley, S.J.; Schneider, A.; Iosif, A.M.; Solomon, M.; Hessl, D.; Schweitzer, J.B.: Computerized cognitive training in children with autism and intellectual disabilities: feasibility and satisfaction study. JMIR Mental Health. 5(2), e40 (2018). https://doi.org/10.2196/mental.9564
Dovis, S.; Van der Oord, S.; Wiers, R.W.; Prins, P.J.: Improving executive functioning in children with ADHD: training multiple executive functions within the context of a computer game: a randomized double-blind placebo controlled trial. PLoS ONE 10(4), e0121651 (2015). https://doi.org/10.1371/journal.pone.0121651
Kofler, M.J.; Sarver, D.E.; Austin, K.E.; Schaefer, H.S.; Holland, E.; Aduen, P.A.; Wells, E.L.; Soto, E.F.; Irwin, L.N.; Schatschneider, C.; Lonigan, C.J.: Can working memory training work for ADHD? Development of central executive training and comparison with behavioral parent training. J. Consult. Clin. Psychol. 86(12), 964–979 (2018). https://doi.org/10.1037/ccp0000308
Davis, N.O.; Bower, J.; Kollins, S.H.: Proof-of-concept study of an at-home, engaging, digital intervention for pediatric ADHD. PLoS ONE 13(1), e0189749 (2018). https://doi.org/10.1371/journal.pone.0189749
Kollins, S.; DeLoss, D.; Canadas, E.; Lutz, J.; Findling, R.; Keefe, R.; Epstein, J.; Cutler, A.; Faraone, S.: A novel digital intervention for actively reducing severity of paediatric ADHD (STARS-ADHD): a randomised controlled trial. The Lancet Digital Health. (2020). https://doi.org/10.1016/S2589-7500(20)30017-0
Moore, A.L.; Carpenter, D.M., 2nd.; Miller, T.M.; Ledbetter, C.: Clinician-delivered cognitive training for children with attention problems: effects on cognition and behavior from the ThinkRx randomized controlled trial. Neuropsychiatr. Dis. Treat. 14, 1671–1683 (2018). https://doi.org/10.2147/NDT.S165418
Jedlicka, E.J.: LearningRx cognitive training for children and adolescents ages 5–18: effects on academic skills, behavior, and cognition. Front. Educ. (2017). https://doi.org/10.3389/feduc.2017.00062
Carpenter, D.M.; Ledbetter, C.; Moore, A.L.: LearningRx cognitive training effects in children ages 8–14: a randomized controlled trial. Appl. Cogn. Psychol. 30(5), 815–826 (2016). https://doi.org/10.1002/acp.3257
Bul, K.; Doove, L.L.; Franken, I.; Oord, S.V.; Kato, P.M.; Maras, A.: A serious game for children with Attention Deficit Hyperactivity Disorder: Who benefits the most? PLoS ONE 13(3), e0193681 (2018). https://doi.org/10.1371/journal.pone.0193681
Bul, K.C.; Kato, P.M.; Van der Oord, S.; Danckaerts, M.; Vreeke, L.J.; Willems, A.; van Oers, H.J.; Van Den Heuvel, R.; Birnie, D.; Van Amelsvoort, T.A.; Franken, I.H.; Maras, A.: Behavioral outcome effects of serious gaming as an adjunct to treatment for children with attention-deficit/hyperactivity disorder: a randomized controlled trial. J. Med. Internet Res. 18(2), e26 (2016). https://doi.org/10.2196/jmir.5173
Kolodny, T.; Ashkenazi, Y.; Farhi, M., et al.: Computerized progressive attention training (CPAT) vs. active control in adults with ADHD. J. Cogn. Enhanc. 1, 526–538 (2017). https://doi.org/10.1007/s41465-017-0056-x
de Oliviera Rosa, V.D.; Franco, A.R.; Júnior, G.A.; Moreira-Maia, C.R.; Wagner, F.; Simioni, A.; Bassotto, C.D.; Moritz, G.R.; Aguzzoli, C.S.; Buchweitz, A.; Schmitz, M.; Rubia, K.; Rohde, L.A.: Effects of computerized cognitive training as add-on treatment to stimulants in ADHD: a pilot fMRI study. Brain Imaging Behav. 14(5), 1933–1944 (2019). https://doi.org/10.1007/s11682-019-00137-0
Anderson, P.J.; Lee, K.J.; Roberts, G.; Spencer-Smith, M.M.; Thompson, D.K.; Seal, M.L.; Nosarti, C.; Grehan, A.; Josev, E.K.; Gathercole, S.; Doyle, L.W.; Pascoe, L.: Long-term academic functioning following cogmed working memory training for children born extremely preterm: a randomized controlled trial. J. Pediatr. 202, 92-97.e4 (2018). https://doi.org/10.1016/j.jpeds.2018.07.003
van Houdt, C.A.; van Wassenaer-Leemhuis, A.G.; Oosterlaan, J.; Königs, M.; Koopman-Esseboom, C.; Laarman, A.; van Kaam, A.H.; Aarnoudse-Moens, C.: Executive function training in very preterm children: a randomized controlled trial. Eur. Child Adolesc. Psychiatry 30(5), 785–797 (2021). https://doi.org/10.1007/s00787-020-01561-0
Bikic, A.; Leckman, J.F.; Christensen, T.Ø.; Bilenberg, N.; Dalsgaard, S.: Attention and executive functions computer training for attention-deficit/hyperactivity disorder (ADHD): results from a randomized, controlled trial. Eur. Child Adolesc. Psychiatry. 27(12), 1563–1574 (2018). https://doi.org/10.1007/s00787-018-1151-y
Verbeken, S.; Braet, C.; Naets, T.; Houben, K.; Boendermake, W.; Zeepreventorium, V.Z.: Computer training of attention and inhibition for youngsters with obesity: a pilot study. Appetite 1(123), 439–447 (2018). https://doi.org/10.1016/j.appet.2017.12.029
Powell, G.; Wass, S.V.; Erichsen, J.T.; Leekam, S.R.: First evidence of the feasibility of gaze-contingent attention training for school children with autism. Aut. Int. J. Res. Pract. 20(8), 927–937 (2016). https://doi.org/10.1177/1362361315617880
Hessl, D.; Schweitzer, J.B.; Nguyen, D.V., et al.: Cognitive training for children and adolescents with fragile X syndrome: a randomized controlled trial of Cogmed. J. Neurodevelop. Disord. 11, 4 (2019). https://doi.org/10.1186/s11689-019-9264-2
Stevens, M.C.; Gaynor, A.; Bessette, K.L.; Pearlson, G.D.: A preliminary study of the effects of working memory training on brain function. Brain Imaging Behav. 10(2), 387–407 (2016). https://doi.org/10.1007/s11682-015-9416-2
Homer, B.D.; Plass, J.L.; Raffaele, C.; Ober, T.; Ali, A.: Improving high school students’ executive functions through digital game play. Comput. Educ. (2017). https://doi.org/10.1016/j.compedu.2017.09.011
Homer, B.D.; Plass, J.L.; Rose, M.C.; MacNamara, A.P.; Pawar, S.; Ober, T.M.: Activating adolescents’ “hot” executive functions in a digital game to train cognitive skills: the effects of age and prior abilities. Cogn. Dev. 49, 20–32 (2019). https://doi.org/10.1016/j.cogdev.2018.11.005
Corti, C.; Poggi, G.; Romaniello, R.; Strazzer, S.; Urgesi, C.; Borgatti, R.; Bardoni, A.: Feasibility of a home-based computerized cognitive training for pediatric patients with congenital or acquired brain damage: an explorative study. PLoS ONE 13(6), e0199001 (2018). https://doi.org/10.1371/journal.pone.0199001
Corti, C.; Urgesi, C.; Poggi, G., et al.: Home-based cognitive training in pediatric patients with acquired brain injury: preliminary results on efficacy of a randomized clinical trial. Sci. Rep. 10, 1391 (2020). https://doi.org/10.1038/s41598-020-57952-5
Papanastasiou, G.; Drigas, A.; Skianis, C.; Lytras, M.: Serious games in K-12 education: Benefits and impacts on students with attention, memory and developmental disabilities. Prog. Electron. Lib. Inf. Syst. 51(4), 424–440 (2017). https://doi.org/10.1108/PROG-02-2016-0020
Ackermann, S.; Halfon, O.; Fornari, E.; Urben, S.; Bader, M.: Cognitive Working Memory Training (CWMT) in adolescents suffering from Attention-Deficit/Hyperactivity Disorder (ADHD): a controlled trial taking into account concomitant medication effects. Psychiatry Res. 269, 79–85 (2018). https://doi.org/10.1016/j.psychres.2018.07.036
Rowlands, A.; Fisher, M.; Mishra, J.; Nahum, M.; Brandrett, B.; Reinke, M.; Caldwell, M.; Kiehl, K.A.; Vinogradov, S.: Cognitive training for very high risk incarcerated adolescent males. Front. Psychiatry. (2020). https://doi.org/10.3389/fpsyt.2020.00225
Moore, A.L.; Carpenter, D.M.; Miller, T.M., et al.: Comparing two methods of delivering thinkrx cognitive training to children ages 8–14: a randomized controlled trial of equivalency. J. Cogn. Enhanc. 3, 261–270 (2019). https://doi.org/10.1007/s41465-018-0094-z
Linares, R.; Borella, E.; Lechuga, M.T.; Carretti, B.; Pelegrina, S.: Nearest transfer effects of working memory training: a comparison of two programs focused on working memory updating. PLoS ONE 14(2), e0211321 (2019). https://doi.org/10.1371/journal.pone.0211321
Schwarb, H.; Nail, J.; Schumacher, E.H.: Working memory training improves visual short-term memory capacity. Psychol. Res. 80, 128–148 (2016). https://doi.org/10.1007/s00426-015-0648-y
Waris, O.; Soveri, A.; Laine, M.: Transfer after working memory updating training. PLoS ONE 10(9), e0138734 (2015). https://doi.org/10.1371/journal.pone.0138734
Hogrefe, A.B.; Studer-Luethi, B.; Kodzhabashev, S., et al.: Mechanisms underlying n-back training: response consistency during training influences training outcome. J. Cogn. Enhanc. 1, 406–418 (2017). https://doi.org/10.1007/s41465-017-0042-3
Hosseini, S.; Pritchard-Berman, M.; Sosa, N.; Ceja, A.; Kesler, S.R.: Task-based neurofeedback training: a novel approach toward training executive functions. Neuroimage 134, 153–159 (2016). https://doi.org/10.1016/j.neuroimage.2016.03.035
Baniqued, P.L.; Allen, C.M.; Kranz, M.B.; Johnson, K.; Sipolins, A.; Dickens, C.; Ward, N.; Geyer, A.; Kramer, A.F.: Working memory, reasoning, and task switching training: Transfer effects, limitations, and great expectations? PLoS ONE 10(11), e0142169 (2015). https://doi.org/10.1371/journal.pone.0142169
Zwilling, C.E.; Daugherty, A.M.; Hillman, C.H., et al.: Enhanced decision-making through multimodal training. NPJ Sci. Learn. 4, 11 (2019). https://doi.org/10.1038/s41539-019-0049-x
Tusch, E.S.; Alperin, B.R.; Ryan, E.; Holcomb, P.J.; Mohammed, A.H.; Daffner, K.R.: Changes in neural activity underlying working memory after computerized cognitive training in older adults. Front. Aging Neurosci. 8, 255 (2016). https://doi.org/10.3389/fnagi.2016.00255
Talanow, T.; Ettinger, U.: Effects of task repetition but no transfer of inhibitory control training in healthy adults. Acta Psychol. 187, 37–53 (2018). https://doi.org/10.1016/j.actpsy.2018.04.016
Olfers, K.; Band, G.: Game-based training of flexibility and attention improves task-switch performance: near and far transfer of cognitive training in an EEG study. Psychol. Res. 82(1), 186–202 (2018). https://doi.org/10.1007/s00426-017-0933-z
Shahar, N.; Pereg, M.; Teodorescu, A.R.; Moran, R.; Meiran, N.: Formation of abstract task representations: exploring dosage and mechanisms of working memory training effects. Cognition 181, 151–159 (2018). https://doi.org/10.1016/j.cognition.2018.08.007
Foster, J.L.; Harrison, T.L.; Hicks, K.L.; Draheim, C.; Redick, T.; Engle, R.: Do the effects of working memory training depend on baseline ability level? J. Exp. Psychol. Learn. Mem. Cogn. 43, 1677–1689 (2017). https://doi.org/10.1037/xlm0000426
Wells, A.; Parong, J.; Mayer, R.E.: Limits on training inhibitory control with a focused video game. J. Cogn. Enhanc. 5, 83–98 (2021). https://doi.org/10.1007/s41465-020-00184-2
Martincevic, M.; Vranic, A.: Casual game or cognitive gain: multitask casual game as a training for young adults. J. Cogn. Enhanc. 4, 434–445 (2020). https://doi.org/10.1007/s41465-
Schmicker, M.; Müller, P.; Schwefel, M.; Müller, N.G.: Attentional filter training but not memory training improves decision-making. Front. Hum. Neurosci. 11, 138 (2017). https://doi.org/10.3389/fnhum.2017.00138
Wilkinson, A.; Yang, L.: Inhibition plasticity in older adults: practice and transfer effects using a multiple task approach. Neural Plast. (2016). https://doi.org/10.1155/2016/9696402
Piskulic, D.; Barbato, M.; Liu, L.; Addington, J.: Pilot study of cognitive remediation therapy on cognition in young people at clinical high risk of psychosis. Psychiatry 30(225), 93–98 (2015). https://doi.org/10.1016/j.psychres.2014.10.021
Harvey, P.; Balzer, A.; Kotwicki, R.: Training engagement, baseline cognitive functioning, and cognitive gains with computerized cognitive training: a cross-diagnostic study. Schizophrenia Res. Cogn. (2019). https://doi.org/10.1016/j.scog.2019.100150
Kashyap, H.; Reddy, P.; Mandadi, S.; Narayanaswamy, J.; Sudhir, P.; Reddy, Y.C.: Cognitive training for neurocognitive and functional impairments in obsessive compulsive disorder: a case report. J. Obsessive-Compul. Relat. Disord. (2019). https://doi.org/10.1016/j.jocrd.2019.100480
Liu, Z.X.; Glizer, D.; Tannock, R.; Woltering, S.: EEG alpha power during maintenance of information in working memory in adults with ADHD and its plasticity due to working memory training: a randomized controlled trial. Clin. Neurophysiol. 127(2), 1307–1320 (2016). https://doi.org/10.1016/j.clinph.2015.10.032
Cohen, N.; Margulies, D.; Ashkenazi, S.; Schäfer, A.; Taubert, M.; Henik, A.; Villringer, A.; Okon-Singer, H.: Using executive control training to suppress amygdala reactivity to aversive information. Neuroimage 125, 1022–1031 (2016). https://doi.org/10.1016/j.neuroimage.2015.10.069
Rahmani, M.; Rahimian Boogar, I.; Talepasand, S.; Nokani, M.: Comparing the effectiveness of computer-based, manual-based, and combined cognitive rehabilitation on cognitive functions in relapsing-remitting multiple sclerosis patients. Basic Clin. Neurosci. 11(1), 99–110 (2020). https://doi.org/10.32598/bcn.9.10.430
Pedullà, L.; Brichetto, G.; Tacchino, A.; Vassallo, C.; Zaratin, P.; Battaglia, M.A.; Bonzano, L.; Bove, M.: Adaptive vs. non-adaptive cognitive training by means of a personalized App: a randomized trial in people with multiple sclerosis. J. NeuroEngineering Rehabil. 13, 88 (2016). https://doi.org/10.1186/s12984-016-0193-y
Pérez-Martín, M.Y.; González-Platas, M.; Eguía-Del Río, P.; Croissier-Elías, C.; Jiménez-Sosa, A.: Efficacy of a short cognitive training program in patients with multiple sclerosis. Neuropsychiatr. Dis. Treat. 13, 245–252 (2017). https://doi.org/10.2147/NDT.S124448
Messinis, L.; Nasios, G.; Kosmidis, M.H.; Zampakis, P.; Malefaki, S.; Ntoskou, K.; Nousia, A.; Bakirtzis, C.; Grigoriadis, N.; Gourzis, P.; Papathanasopoulos, P.: Efficacy of a computer-assisted cognitive rehabilitation intervention in relapsing-remitting multiple sclerosis patients: a multicenter randomized controlled trial. Behav. Neurol. (2017). https://doi.org/10.1155/2017/5919841
Campbell, J.; Langdon, D.; Cercignani, M.; Rashid, W.: A randomised controlled trial of efficacy of cognitive rehabilitation in multiple sclerosis: a cognitive, behavioural, and MRI study. Neural Plast. (2016). https://doi.org/10.1155/2016/4292585
Bove, R.M.; Rush, G.; Zhao, C.; Rowles, W.; Garcha, P.; Morrissey, J.; Schembri, A.; Alailima, T.; Langdon, D.; Possin, K.; Gazzaley, A.; Feinstein, A.; Anguera, J.: A videogame-based digital therapeutic to improve processing speed in people with multiple sclerosis: a feasibility study. Neurol. Ther. 8(1), 135–145 (2019). https://doi.org/10.1007/s40120-018-0121-0
Bell, M.D.; Laws, H.; Pittman, B., et al.: Comparison of focused cognitive training and portable “brain-games” on functional outcomes for vocational rehabilitation participants. Sci. Rep. 8, 1779 (2018). https://doi.org/10.1038/s41598-018-20094-w
Michalopoulou, P.G.; Lewis, S.W.; Drake, R.J.; Reichenberg, A.; Emsley, R.; Kalpakidou, A.K.; Lees, J.; Bobin, T.; Gilleen, J.K.; Pandina, G.; Applegate, E.; Wykes, T.; Kapur, S.: Modafinil combined with cognitive training: pharmacological augmentation of cognitive training in schizophrenia. Eur. Neuropsychopharmacol. J. Eur. College Neuropsychopharmacol. 25(8), 1178–1189 (2015). https://doi.org/10.1016/j.euroneuro.2015.03.009
Biagianti, B.; Fisher, M.; Howard, L.; Rowlands, A.; Vinogradov, S.; Woolley, J.: Feasibility and preliminary efficacy of remotely delivering cognitive training to people with schizophrenia using tablets. Schizophrenia Res. Cogn. 10, 7–14 (2017). https://doi.org/10.1016/j.scog.2017.07.003
Jahshan, C.; Vinogradov, S.; Wynn, J.K.; Hellemann, G.; Green, M.F.: A randomized controlled trial comparing a “bottom-up” and “top-down” approach to cognitive training in schizophrenia. J. Psychiatr Res. 109, 118–125 (2019). https://doi.org/10.1016/j.jpsychires.2018.11.027
Fernandez-Gonzalo, S.; Turon, M.; Jodar, M.; Pousa, E.; Hernandez-Rambla, C.; García, R.; Palao, D.A.: A new computerized cognitive and social cognition training specifically designed for patients with schizophrenia/schizoaffective disorder in early stages of illness: a pilot study. Psychiatry Res. 228(3), 501–509 (2015). https://doi.org/10.1016/j.psychres.2015.06.007
Fernandez-Gonzalo, S.; Turon, M.; Jodar, M.; Pousa, E.; Hernandez, C.; García, R.; Palao, D.: A new computerized cognitive and social cognition training specifically designed for patients with schizophrenia/schizoaffective disorder in early stages of illness: a pilot study. Psychiatry Res. 228(3), 501–509 (2015). https://doi.org/10.1016/j.psychres.2015.06.007
Reeder, C.; Huddy, V.; Cella, M.; Taylor, R.; Greenwood, K.; Landau, S.; Wykes, T.: A new generation computerised metacognitive cognitive remediation programme for schizophrenia (CIRCuiTS): a randomised controlled trial. Psychol. Med. 47(15), 1–11 (2017). https://doi.org/10.1017/S0033291717001234
Palumbo, D.; Mucci, A.; Giordano, G.M.; Piegari, G.; Aiello, C.; Pietrafesa, D.; Annarumma, N.; Chieffi, M.; Cella, M.; Galderisi, S.: The efficacy, feasibility and acceptability of a remotely accessible use of CIRCuiTS, a computerized cognitive remediation therapy program for schizophrenia: a pilot study. Neuropsychiatr. Dis. Treat. 15, 3103–3113 (2019). https://doi.org/10.2147/NDT.S221690
Matsuoka, K.; Morimoto, T.; Matsuda, Y.; Yasuno, F.; Taoka, T.; Miyasaka, T.; Yoshikawa, H.; Takahashi, M.; Kitamura, S.; Kichikawa, K.; Kishimoto, T.: Computer-assisted cognitive remediation therapy for patients with schizophrenia induces microstructural changes in cerebellar regions involved in cognitive functions. Psychiatry Res. Neuroimaging. 292, 41–46 (2019). https://doi.org/10.1016/j.pscychresns.2019.09.001
Mahncke, H.W.; Kim, S.J.; Rose, A.; Stasio, C.; Buckley, P.; Caroff, S.; Duncan, E.; Yasmin, S.; Jarskog, L.F.; Lamberti, J.S.; Nuechterlein, K.; Strassnig, M.; Velligan, D.; Ventura, J.; Walker, T.; Stroup, T.S.; Keefe, R.S.E.: Evaluation of a plasticity-based cognitive training program in schizophrenia: results from the eCaesar trial. Schizophr. Res. 208, 182–189 (2019). https://doi.org/10.1016/j.schres.2019.03.006
Hotton, M.; Derakshan, N.; Fox, E.: A randomised controlled trial investigating the benefits of adaptive working memory training for working memory capacity and attentional control in high worriers. Behav. Res. Ther. 100, 67–77 (2018). https://doi.org/10.1016/j.brat.2017.10.011
Listunova, L.; Kienzle, J.; Bartolovic, M.; Jaehn, A.; Grützner, T.M.; Wolf, R.C.; Aschenbrenner, S.; Weisbrod, M.; Roesch-Ely, D.: Cognitive remediation therapy for partially remitted unipolar depression: a single-blind randomized controlled trial. J. Affect. Disord. 276, 316–326 (2020). https://doi.org/10.1016/j.jad.2020.07.008
Motter, J.N.; Grinberg, A.; Lieberman, D.H.; Iqnaibi, W.B.; Sneed, J.R.: Computerized cognitive training in young adults with depressive symptoms: effects on mood, cognition, and everyday functioning. J. Affect Disord. 15(245), 28–37 (2019). https://doi.org/10.1016/j.jad.2018.10.109
Fonzo, G.A.; Fine, N.B.; Wright, R.N.; Achituv, M.; Zaiko, Y.V.; Merin, O.; Shalev, A.Y.; Etkin, A.: Internet-delivered computerized cognitive & affective remediation training for the treatment of acute and chronic posttraumatic stress disorder: two randomized clinical trials. J. Psychiatr. Res. 115, 82–89 (2019). https://doi.org/10.1016/j.jpsychires.2019.05.007
Fernandez, E.; Bergado Rosado, J.A.; Rodriguez Perez, D.; Salazar Santana, S.; Torres Aguilar, M.; Bringas, M.L.: Effectiveness of a computer-based training program of attention and memory in patients with acquired brain damage. Behav. Sci. 8(1), 4 (2017). https://doi.org/10.3390/bs8010004
Välimäki, M.; Mishina, K.; Kaakinen, J.K.; Holm, S.K.; Vahlo, J.; Kirjonen, M.; Pekurinen, V.; Tenovuo, O.; Korkeila, J.; Hämäläinen, H.; Sarajuuri, J.; Rantanen, P.; Orenius, T.; Koponen, A.: Digital gaming for improving the functioning of people with traumatic brain injury: randomized clinical feasibility study. J. Med. Internet Res. 20(3), e77 (2018). https://doi.org/10.2196/jmir.7618
Best, M.W.; Gale, D.; Tran, T.; Haque, M.K.; Bowie, C.R.: Brief executive function training for individuals with severe mental illness: effects on EEG synchronization and executive functioning. Schizophr. Res. 203, 32–40 (2019). https://doi.org/10.1016/j.schres.2017.08.052
van de Ven, R.M.; Schmand, B.; Groet, E.; Veltman, D.J.; Murre, J.M.: The effect of computer-based cognitive flexibility training on recovery of executive function after stroke: rationale, design and methods of the TAPASS study. BMC Neurol. 15, 144 (2015). https://doi.org/10.1186/s12883-015-0397-y
De Luca, R.; Leonardi, S.; Spadaro, L.; Russo, M.; Aragona, B.; Torrisi, M.; Maggio, M.G.; Bramanti, A.; Naro, A.; De Cola, M.C.; Calabrò, R.S.: Improving cognitive function in patients with stroke: Can computerized training be the future? J. Stroke Cerebrovasc. Dis. (2017). https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.11.008
van de Ven, R.M.; Murre, J.; Buitenweg, J.; Veltman, D.J.; Aaronson, J.A.; Nijboer, T.; Kruiper-Doesborgh, S.; van Bennekom, C.; Ridderinkhof, K.R.; Schmand, B.: The influence of computer-based cognitive flexibility training on subjective cognitive well-being after stroke: a multi-center randomized controlled trial. PLoS ONE 12(11), e0187582 (2017). https://doi.org/10.1371/journal.pone.0187582
Khemiri, L.; Brynte, C.; Stunkel, A.; Klingberg, T.; Jayaram-Lindström, N.: Working memory training in alcohol use disorder: a randomized controlled trial. Alcohol. Clin. Exp. Res. 43(1), 135–146 (2019). https://doi.org/10.1111/acer.13910
Rass, O.; Schacht, R.L.; Buckheit, K.; Johnson, M.W.; Strain, E.C.; Mintzer, M.Z.: A randomized controlled trial of the effects of working memory training in methadone maintenance patients. Drug Alcohol Depend. 156, 38–46 (2015). https://doi.org/10.1016/j.drugalcdep.2015.08.012
Brooks, S.J.; Wiemerslage, L.; Burch, K.; Maiorana, S.; Cocolas, E.; Schiöth, H.; Kamaloodien, K.; Stein, D.: The impact of cognitive training in substance use disorder: the effect of working memory training on impulse control in methamphetamine users. Psychopharmacology 234, 1911–1921 (2017). https://doi.org/10.1007/s00213-017-4597-6
Valls-Serrano, C.; Caracuel, A.; Verdejo-Garcia, A.: Goal Management Training and Mindfulness Meditation improve executive functions and transfer to ecological tasks of daily life in polysubstance users enrolled in therapeutic community treatment. Drug Alcohol Depend. 1(165), 9–14 (2016). https://doi.org/10.1016/j.drugalcdep.2016.04.040
Marceau, E.M.; Berry, J.; Lunn, J.; Kelly, P.J.; Solowij, N.: Cognitive remediation improves executive functions, self-regulation and quality of life in residents of a substance use disorder therapeutic community. Drug Alcohol Depend. 1(178), 150–158 (2017). https://doi.org/10.1016/j.drugalcdep.2017.04.023
Loughead, J.; Falcone, M.; Wileyto, E.P.; Albelda, B.; Audrain-McGovern, J.; Cao, W.; Kurtz, M.M.; Gur, R.C.; Lerman, C.: Can brain games help smokers quit?: Results of a randomized clinical trial. Drug Alcohol Depend. 168, 112–118 (2016). https://doi.org/10.1016/j.drugalcdep.2016.08.621
Damholdt, M.F.; Mehlsen, M.; O’Toole, M.S.; Andreasen, R.K.; Pedersen, A.D.; Zachariae, R.: Web-based cognitive training for breast cancer survivors with cognitive complaints-a randomized controlled trial. Psychooncology 25(11), 1293–1300 (2016). https://doi.org/10.1002/pon.4058
Yhnell, E.; Furby, H.; Lowe, R.S.; Brookes-Howell, L.C.; Drew, C.J.G.; Playle, R.; Watson, G.; Metzler-Baddeley, C.; Rosser, A.E.; Busse, M.E.: A randomised feasibility study of computerised cognitive training as a therapeutic intervention for people with Huntington’s disease (CogTrainHD). Pilot Feasibility Stud. 19(6), 88 (2020). https://doi.org/10.1186/s40814-020-00623-z
Towe, S.L.; Hartsock, J.T.; Xu, Y.; Meade, C.S.: Web-based cognitive training to improve working memory in persons with co-occurring HIV infection and cocaine use disorder: outcomes from a randomized controlled trial. AIDS Behav. (2020). https://doi.org/10.1007/s10461-020-02993-0
Towe, S.L.; Patel, P.; Meade, C.S.: The acceptability and potential utility of cognitive training to improve working memory in persons living with HIV: a preliminary randomized trial. J. Assoc. Nurses AIDS Care: JANAC 28(4), 633–643 (2017). https://doi.org/10.1016/j.jana.2017.03.007
Ballesteros, S.; Mayas, J.; Prieto, A.; Ruiz-Marquez, E.; Toril, P.; Reales, J.: Effects of video game training on measures of selective attention and working memory in older adults: results from a randomized controlled trial. Front. Aging Neurosci. (2017). https://doi.org/10.3389/fnagi.2017.00354
Brooks, S.J.; Burch, K.H.; Maiorana, S.A.; Cocolas, E.; Schioth, H.B.; Nilsson, E.K.; Kamaloodien, K.; Stein, D.J.: Psychological intervention with working memory training increases basal ganglia volume: a VBM study of inpatient treatment for methamphetamine use. NeuroImage. Clin. 12, 478–491 (2016). https://doi.org/10.1016/j.nicl.2016.08.019
Toril, P.; Reales, J.M.; Mayas, J.; Ballesteros, S.: Video game training enhances visuospatial working memory and episodic memory in older adults. Front. Hum. Neurosci. 10, 206 (2016). https://doi.org/10.3389/fnhum.2016.00206
Buitenweg, J.; van de Ven, R.M.; Prinssen, S.; Murre, J.; Ridderinkhof, K.R.: Cognitive flexibility training: a large-scale multimodal adaptive active-control intervention study in healthy older adults. Front. Hum. Neurosci. 11, 529 (2017). https://doi.org/10.3389/fnhum.2017.00529
Hay, M.; Adam, N.; Bocca, M., et al.: Effectiveness of two cognitive training programs on the performance of older drivers with a cognitive self-assessment bias. Eur. Transp. Res. Rev. 8, 20 (2016). https://doi.org/10.1007/s12544-016-0207-7
Matysiak, O.; Kroemeke, A.; Brzezicka, A.: Working memory capacity as a predictor of cognitive training efficacy in the elderly population. Front. Aging Neurosci. 11, 126 (2019). https://doi.org/10.3389/fnagi.2019.00126
Hering, A.; Meuleman, B.; Bürki, C., et al.: Improving older adults’ working memory: the influence of age and crystallized intelligence on training outcomes. J. Cogn. Enhanc. 1, 358–373 (2017). https://doi.org/10.1007/s41465-017-0041-4
Grönholm-Nyman, P.; Soveri, A.; Rinne, J.O.; Ek, E.; Nyholm, A.; Stigsdotter Neely, A.; Laine, M.: Limited effects of set shifting training in healthy older adults. Front. Aging Neurosci. 9, 69 (2017). https://doi.org/10.3389/fnagi.2017.00069
Gajewski, P.; Falkenstein, M.: ERP and behavioral effects of physical and cognitive training on working memory in aging: a randomized controlled study. Neural Plast. (2018). https://doi.org/10.1155/2018/3454835
Weicker, J.; Hudl, N.; Frisch, S.; Lepsien, J.; Mueller, K.; Villringer, A.; Thöne-Otto, A.: WOME: theory-based working memory training: a placebo-controlled, double-blind evaluation in older adults. Front. Aging Neurosci. 10, 247 (2018). https://doi.org/10.3389/fnagi.2018.00247
Payne, B.R.; Stine-Morrow, E.: The effects of home-based cognitive training on verbal working memory and language comprehension in older adulthood. Front. Aging Neurosci. 9, 256 (2017). https://doi.org/10.3389/fnagi.2017.00256
De Luca, R.; Bramanti, A.; De Cola, M.C.: Cognitive training for patients with dementia living in a sicilian nursing home: a novel web-based approach. Neurol. Sci. 37, 1685–1691 (2016). https://doi.org/10.1007/s10072-016-2659-x
Kim, H.; Chey, J.; Lee, S.: Effects of multicomponent training of cognitive control on cognitive function and brain activation in older adults. Neurosci. Res. 124, 8–15 (2017). https://doi.org/10.1016/j.neures.2017.05.004
Requena, C.; Rebok, G.W.: Evaluating successful aging in older people who participated in computerized or paper-and-pencil memory training: the memoria mejor program. Int. J. Environ. Res. Public Health 16(2), 191 (2019). https://doi.org/10.3390/ijerph16020191
Liao, Y.Y.; Chen, I.H.; Lin, Y.J.; Chen, Y.; Hsu, W.C.: Effects of virtual reality-based physical and cognitive training on executive function and dual-task gait performance in older adults with mild cognitive impairment: a randomized control trial. Front. Aging Neurosci. 11, 162 (2019). https://doi.org/10.3389/fnagi.2019.00162
Ettenhofer, M.L.; Guise, B.; Brandler, B.; Bittner, K.; Gimbel, S.I.; Cordero, E.; Schmitt, S.; Williams, K.; Cox, D.; Roy, M.J.; Chan, L.: Neurocognitive driving rehabilitation in virtual environments (NeuroDRIVE): a pilot clinical trial for chronic traumatic brain injury. NeuroRehabilitation 44(4), 531–544 (2019). https://doi.org/10.3233/NRE-192718
Manera, V.; Chapoulie, E.; Bourgeois, J.; Guerchouche, R.; David, R.; Ondrej, J.; Drettakis, G.; Robert, P.: A feasibility study with image-based rendered virtual reality in patients with mild cognitive impairment and dementia. PLoS ONE 11(3), e0151487 (2016). https://doi.org/10.1371/journal.pone.0151487
Motes, M.A.; Yezhuvath, U.S.; Aslan, S.; Spence, J.S.; Rypma, B.; Chapman, S.B.: Higher-order cognitive training effects on processing speed-related neural activity: a randomized trial. Neurobiol. Aging. 62, 72–81 (2018). https://doi.org/10.1016/j.neurobiolaging.2017.10.003
Takeuchi, H.; Magistro, D.; Kotozaki, Y.; Motoki, K.; Nejad, K.; Nouchi, R.; Jeong, H.; Sato, C.; Sessa, S.; Nagatomi, R.; Zecca, M.; Takanishi, A.; Kawashima, R.: Effects of simultaneously performed dual-task training with aerobic exercise and working memory training on cognitive functions and neural systems in the elderly. Neural Plast. (2020). https://doi.org/10.1155/2020/3859824
Lai, L.; Bruce, H.; Bherer, L., et al.: Comparing the transfer effects of simultaneously and sequentially combined aerobic exercise and cognitive training in older adults. J. Cogn. Enhanc. 1, 478–490 (2017). https://doi.org/10.1007/s41465-017-0052-1
Raichlen, D.A.; Bharadwaj, P.K.; Nguyen, L.A., et al.: Effects of simultaneous cognitive and aerobic exercise training on dual-task walking performance in healthy older adults: results from a pilot randomized controlled trial. BMC Geriatr. (2020). https://doi.org/10.1186/s12877-020-1484-5
Gary, R.A.; Paul, S.; Corwin, E.; Butts, B.; Miller, A.H.; Hepburn, K.; Williams, B.; Waldrop-Valverde, D.: Exercise and cognitive training as a strategy to improve neurocognitive outcomes in heart failure: a pilot study. Am. J. Geriatr. Psychiatry 27(8), 809–819 (2019). https://doi.org/10.1016/j.jagp.2019.01.211
Bruce, H.; Lai, L.; Bherer, L.; Lussier, M.; St-Onge, N.; Li, K.Z.H.: The effect of simultaneously and sequentially delivered cognitive and aerobic training on mobility among older adults with hearing loss. Gait Posture. 67, 262–268 (2019). https://doi.org/10.1016/j.gaitpost.2018.10.020
Strobach, T.; Huestegge, L.: Evaluating the effectiveness of commercial brain game training with working-memory tasks. J. Cogn. Enhanc. 1, 539–558 (2017). https://doi.org/10.1007/s41465-017-0053-0
Hynes, S.M.: Internet, home-based cognitive and strategy training with older adults: a study to assess gains to daily life. Aging Clin. Exp. Res. 28, 1003–1008 (2016). https://doi.org/10.1007/s40520-015-0496-z
Goghari, V.M.; Lawlor-Savage, L.: Comparison of cognitive change after working memory training and logic and planning training in healthy older adults. Front. Aging Neurosci. 9, 39 (2017). https://doi.org/10.3389/fnagi.2017.00039
Biel, D.; Steiger, T.K.; Volkmann, T.; Jochems, N.; Bunzeck, N.: The gains of a 4-week cognitive training are not modulated by novelty. Hum. Brain Map. 41, 2596–2610 (2020). https://doi.org/10.1002/hbm.24965
Minear, M.; Brasher, F.; Guerrero, C.B., et al.: A simultaneous examination of two forms of working memory training: evidence for near transfer only. Mem. Cogn. 44, 1014–1037 (2016). https://doi.org/10.3758/s13421-016-0616-9
Wayne, R.V.; Hamilton, C.; Jones Huyck, J.; Johnsrude, I.S.: Working memory training and speech in noise comprehension in older adults. Front. Aging Neurosci. 8, 49 (2016). https://doi.org/10.3389/fnagi.2016.00049
Liberta, T.A.; Kagiwada, M.; Ho, K.; Spat-Lemus, J.; Voelbel, G.T.; Kohn, A.; Perrine, K.; Josephs, L.; McLean, E.; Sacks-Zimmerman, A.: An investigation of Cogmed working memory training for neurological surgery patients. Interdiscip. Neurosurg. (2020). https://doi.org/10.1016/j.inat.2020.100786
Maier, M.; Ballester, B.R.; Leiva Bañuelos, N.; Duarte Oller, E.; Verschure, P.: Adaptive conjunctive cognitive training (ACCT) in virtual reality for chronic stroke patients: a randomized controlled pilot trial. J. Neuroeng. Rehabil. 17(1), 42 (2020). https://doi.org/10.1186/s12984-020-0652-3
Nouchi, R.; Saito, T.; Nouchi, H.; Kawashima, R.: Small acute benefits of 4 weeks processing speed training games on processing speed and inhibition performance and depressive mood in the healthy elderly people: evidence from a randomized control trial. Front. Aging Neurosci. 8, 302 (2016). https://doi.org/10.3389/fnagi.2016.00302
Baltaduonienė, D.; Kubilius, R.; Berškienė, K.; Vitkus, L.; Petruseviciene, D.: Change of cognitive functions after stroke with rehabilitation systems. Transl. Neurosci. 10, 118–124 (2019). https://doi.org/10.1515/tnsci-2019-0020
Withiel, T.D.; Wong, D.; Ponsford, J.L.; Cadilhac, D.A.; New, P.; Mihaljcic, T.; Stolwyk, R.J.: Comparing memory group training and computerized cognitive training for improving memory function following stroke: a phase II randomized controlled trial. J. Rehabil. 51(5), 343–351 (2019). https://doi.org/10.2340/16501977-2540
Jiang, C.; Yang, S.; Tao, J.; Huang, J.; Li, Y.; Ye, H.; Chen, S.; Hong, W.; Chen, L.: Clinical efficacy of acupuncture treatment in combination with rehacom cognitive training for improving cognitive function in stroke: a 2 × 2 factorial design randomized controlled trial. J. Am. Med. Direct. Assoc. 17(12), 1114–1122 (2016). https://doi.org/10.1016/j.jamda.2016.07.021
Dundon, N.M.; Dockree, S.P.; Buckley, V.; Merriman, N.; Carton, M.; Clarke, S.; Roche, R.A.; Lalor, E.C.; Robertso, I.H.; Dockree, P.M.: Impaired auditory selective attention ameliorated by cognitive training with graded exposure to noise in patients with traumatic brain injury. Neuropsychologia 75, 74–87 (2015). https://doi.org/10.1016/j.neuropsychologia.2015.05.012
Prokopenko, S.; Bezdenezhnih, A.F.; Mozheyko, E.; Petrova, M.M.: A comparative clinical study of the effectiveness of computer cognitive training in patients with post-stroke cognitive impairments without dementia. Psychol. Russia: State of Art. 11, 55–67 (2018). https://doi.org/10.11621/pir.2018.0205
Weng, W.; Liang, J.; Xue, J.; Zhu, T.; Jiang, Y.; Wang, J.; Chen, S.: The transfer effects of cognitive training on working memory among chinese older adults with mild cognitive impairment: a randomized controlled trial. Front. Aging Neurosci. (2019). https://doi.org/10.3389/fnagi.2019.00212
Lee, G.J.; Bang, H.J.; Lee, K.M.; Kong, H.H.; Seo, H.S.; Oh, M.; Bang, M.: A comparison of the effects between 2 computerized cognitive training programs, Bettercog and COMCOG, on elderly patients with MCI and mild dementia: a single-blind randomized controlled study. Medicine 97(45), e13007 (2018). https://doi.org/10.1097/MD.0000000000013007
Rolandi, E.; Dodich, A.; Galluzzi, S., et al.: Randomized controlled trial on the efficacy of a multilevel non-pharmacologic intervention in older adults with subjective memory decline: design and baseline findings of the E.Mu.N.I. study. Aging Clin. Exp. Res. 32, 817–826 (2020). https://doi.org/10.1007/s40520-019-01403-3
Cavallo, M.; Hunter, E.M.; van der Hiele, K.; Angilletta, C.: Computerized structured cognitive training in patients affected by early-stage alzheimer’s disease is feasible and effective: a randomized controlled study. Arch. Clin. Neuropsychol. 31(8), 868–876 (2016). https://doi.org/10.1093/arclin/acw072
Alloni, A.; Quaglini, S.; Panzarasa, S.; Sinforiani, E.; Bernini, S.: Evaluation of an ontology-based system for computerized cognitive rehabilitation. Int. J. Med. Inform. 115, 64–72 (2018). https://doi.org/10.1016/j.ijmedinf.2018.04.005
Clausen, A.N.; Thelen, J.; Francisco, A.J.; Bruce, J.; Martin, L.; McDowd, J.; Aupperle, R.L.: Computer-based executive function training for combat veterans with PTSD: a pilot clinical trial assessing feasibility and predictors of dropout. Front. Psychiatry. (2019). https://doi.org/10.3389/fpsyt.2019.00062