Artificial Cognitive Systems Applied in Executive Function Stimulation and Rehabilitation Programs: A Systematic Review

Arabian Journal for Science and Engineering - Tập 48 - Trang 2399-2427 - 2022
Carolina Robledo-Castro1,2, Luis F. Castillo-Ossa2,3,4, Juan M. Corchado5,6,7
1Currículo, Universidad y Sociedad Research Group, Universidad del Tolima, Ibagué, Colombia
2Ingeniería del Software Research Group, Universidad Autónoma de Manizales, Manizales, Colombia
3Inteligencia Artificial Research Group, Universidad de Caldas, Manizales, Colombia
4Departamento de Ingeniería Indutrial, Universidad Nacional de Colombia Sede Manizales, Manizales, Colombia
5BISITE Research Group, University of Salamanca, Salamanca, Spain
6Air Institute, IoT Digital Innovation Hub, Salamanca, Spain
7Department of Electronics, Information and Communication, Osaka Institute of Technology, Osaka, Japan

Tóm tắt

This article presents a systematic review of studies on cognitive training programs based on artificial cognitive systems and digital technologies and their effect on executive functions. The aim has been to identify which populations have been studied, the characteristics of the implemented programs, the types of implemented cognitive systems and digital technologies, the evaluated executive functions, and the key findings of these studies. The review has been carried out following the PRISMA protocol; five databases have been selected from which 1889 records were extracted. The articles were filtered following established criteria, to give a final selection of 264 articles that have been used for the purposes of this study in the analysis phase. The findings showed that the most studied populations were school-age children and the elderly. The most studied executive functions were working memory and attentional processes, followed by inhibitory control and processing speed. Many programs were commercial, customizable, gamified, and based on classic tasks. Some more recent initiatives have begun to incorporate user-machine interfaces, robotics, and virtual reality, although studies on their effects remain scarce. The studies recognize multiple benefits of computerized neuropsychological stimulation and rehabilitation programs for executive functions in different age groups, but there is a lack of studies in specific population sectors and with more rigorous research designs.

Tài liệu tham khảo

Bogdanova, Y.; Yee, M.K.; Ho, V.T.; Cicerone, K.D.: Computerized cognitive rehabilitation of attention and executive function in acquired brain injury: a systematic review. J. Head Trauma Rehabil. 31(6), 419–433 (2016). https://doi.org/10.1097/HTR.0000000000000203 Harvey, P.D.; McGurk, S.R.; Mahncke, H.; Wykes, T.: Controversies in computerized cognitive training. Biol. Psychiatry. Cogn. Neurosci. Neuroimaging. 3(11), 907–915 (2018). https://doi.org/10.1016/j.bpsc.2018.06.008 Motter, J.N.; Pimontel, M.A.; Rindskopf, D.; Devanand, D.P.; Doraiswamy, P.M.; Sneed, J.R.: Computerized cognitive training and functional recovery in major depressive disorder: a meta-analysis. J. Affect. Disord. 189, 184–191 (2016). https://doi.org/10.1016/j.jad.2015.09.022 Niemeijer, M.; Sværke, K.W.; Christensen, H.K.: The effects of computer based cognitive rehabilitation in stroke patients with working memory impairment: a systematic review. J. Stroke Cerebrovasc. Dis. Off. J. Natl. Stroke Assoc. 29(12), 105265 (2020). https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.105265 Pham, K.T.; Nabizadeh, A.; Selek, S.: Artificial intelligence and chatbots in psychiatry. Psychiatry Q. 93(1), 249–253 (2022). https://doi.org/10.1007/s11126-022-09973-8 Roth, C.B.; Papassotiropoulos, A.; Brühl, A.B.; Lang, U.E.; Huber, C.G.: Psychiatry in the digital age: A blessing or a curse? Int. J. Environ. Res. Public Health 18(16), 8302 (2021). https://doi.org/10.3390/ijerph18168302 Sonuga-Barke, E.; Brandeis, D.; Holtmann, M.; Cortese, S.: Computer-based cognitive training for ADHD: a review of current evidence. Child Adolesc. Psychiatr. Clin. N. Am. 23(4), 807–824 (2014). https://doi.org/10.1016/j.chc.2014.05.009 Vajawat, B.; Varshney, P.; Banerjee, D.: Digital gaming interventions in psychiatry: evidence, applications and challenges. Psychiatry Res. 295, 113585 (2021). https://doi.org/10.1016/j.psychres.2020.113585 Webb, S.L.; Loh, V.; Lampit, A.; Bateman, J.E.; Birney, D.P.: Meta-analysis of the effects of computerized cognitive training on executive functions: a cross-disciplinary taxonomy for classifying outcome cognitive factors. Neuropsychol. Rev. 28(2), 232–250 (2018). https://doi.org/10.1007/s11065-018-9374-8 Hramov, A.; Maksimenko, V.; Pisarchik, A.: Physical principles of brain-computer interfaces and their applications for rehabilitation, robotics and control of human brain states. Phys. Rep. (2021). https://doi.org/10.1016/j.physrep.2021.03.002 Kletzel, S.L.; Sood, P.; Negm, A.; Heyn, P.C.; Krishnan, S.; Machtinger, J.; Hu, X.; Devos, H.: Effectiveness of brain gaming in older adults with cognitive impairments: a systematic review and meta-analysis. J. Am. Med. Direct. Assoc. 22(11), 2281–2288 (2021) Goldstein, S.; Naglieri, J.A.; Princiotta, D.; Otero, T.M.: Introduction: a history of executive functioning. In: Goldstein, S.; Naglieri, J.A. (Eds.) Handbook of Executive Functioning. Springer (2013) Blair, C.; Ursache, A.: A bidirectional model of executive functions and self-regulation. In: Vohs, K.D.; Baumeister, R.F. (Eds.) Handbook of Self-regulation: Research, Theory, and Applications, pp. 300–320. Guilford Press (2011) Miller, E.; Cohen, J.: An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24, 167–202 (2001). https://doi.org/10.1146/annurev.neuro.24.1.167 Baddeley, A.D.: Working memory. Curr. Biol. 20(4), 136–140 (2010) Petersen, S.E.; Posner, M.I.: The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 35, 73–89 (2012). https://doi.org/10.1146/annurev-neuro-062111-150525 Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.Y.; Wager, T.D.: The unity and diversity of executive functions and their contributions to complex ‘“frontal lobe”’ tasks: a latent variable analysis. Cogn. Psychol. 41, 49–100 (2000). https://doi.org/10.1006/cogp.1999.0734 Barkley, R.: ExecutiveFunctions: What they Are, How they Work, and Why they Evolved. The Guilford Press (2012) Zelazo, P.D.; Qu, L.; Muller, U.: Hot and cool aspects of executive function: relations in early development. In: Schneider, W.; Schumann, R.; Sodian, B. (Eds.) Young Children’s Cognitive Development: Interrelationships Among Executive Junctioning, Working Memory, Verbal Ability, and Theory of Mind, pp. 71–93. Lawrence Eribaum Associates Publishers (2004) Portellano, J.A.: Intervención neuropsicológica de las funciones ejecutivas. Neuroeducación y funciones ejecutivas, Editorial CEPE (2018) Trapaga-Ortega, C.M.: Introducción a la estimulación y rehabilitación de las funciones cognitivas. De la psicología cognitiva a la neuropsicología, Manual modern (2018) Guerrero, G.; García, A.: Plataformas de rehabilitación neuropsicológica: estado actual y líneas de trabajo. Neurologia (2015). https://doi.org/10.1016/j.nrl.2013.06.015 Lubrini, G; Periañez, J.A., Ríos-Lago, M.: Introducción a la estimulación cognitiva y la rehabilitación neuropsicológica. In: Muñoz, E. (Coord) Estimulación cognitiva y rehabilitación neuropsicológica, Editorial UOC (2009) Liu, Q.; Zhu, X.; Ziegler, A.; Shi, J.: The effects of inhibitory control training for preschoolers on reasoning ability and neural activity. Scientifics. 5, 1–10 (2015). https://doi.org/10.1038/srep14200 Schubert, T.; Strobach, T.; Karbach, J.: New directions in cognitive training: on methods, transfer, and application. Psychol. Res. 78(6), 749–755 (2014). https://doi.org/10.1007/s00426-014-0619-8 Ghavidel, F.; Fadardi, J.S.; Gatto, N.M.: Feasibility of using a computer-assisted working memory training program for healthy older women. Cogn. Process. 21, 383–390 (2020). https://doi.org/10.1007/s10339-020-00975-7 Peng, J.; Mo, L.; Huang, P.; Zhou, Y.: The effects of working memory training on improving fluid intelligence of children during early childhood. Cogn. Dev. 43, 224–234 (2017). https://doi.org/10.1016/j.cogdev.2017.05.006 van Houdt, C.A.; van Wassenaer-Leemhuis, A.G.; Oosterlaan, J.; Königs, M.; Koopman-Esseboom, C.; Laarman, A.; van Kaam, A.H.; Aarnoudse-Moens, C.: Executive function training in very preterm children: a randomized controlled trial. Eur. Child Adolesc. Psychiatry. 30(5), 785–797 (2020). https://doi.org/10.1007/s00787-020-01561-0 Dovis, S.; Maric, M.; Prins, P.J., et al.: Does executive function capacity moderate the outcome of executive function training in children with ADHD? ADHD Atten. Def. Hyp. Disord. 11, 445–460 (2019). https://doi.org/10.1007/s12402-019-00308-5 Papanastasiou, G.; Drigas, A.; Skianis, C.; Lytras, M.D.: Brain computer interface based applications for training and rehabilitation of students with neurodevelopmental disorders. A literature review. Heliyon. 6, e04250 (2020) Hudak, E.M.; Edwards, J.D.; Andel, R.: The comparative effects of two cognitive interventions among older adults residing in retirement communities. J. Cogn. Enhanc. 3, 349–358 (2019). https://doi.org/10.1007/s41465-019-00125-8 Parre, M.D.; Sujatha, B.: Novel human-centered robotics: towards an automated process for neurorehabilitation. Neurol. Res. Int. (2021). https://doi.org/10.1155/2021/6690715 Gamito, P.; Oliveira, J.; Alves, C.; Santos, N.; Coelho, C.; Brito, R.: Virtual reality-based cognitive stimulation to improve cognitive functioning in community elderly: a controlled study. Cyberpsychol. Behav. Soc. Netw. 23(3), 150–156 (2020). https://doi.org/10.1089/cyber.2019.0271 Buccellato, K.H.; Nordstrom, M.; Murphy, J.M.; Burdea, G.C.; Polistico, K.; House, G.; Kim, N.; Grampurohit, N.; Sorensen, J.; Isaacson, B.M.; Pasquina, P.F.: A randomized feasibility trial of a novel, integrative, and intensive virtual rehabilitation program for service members post-acquired brain injury. Mil. Med. 185(1–2), e203–e211 (2020). https://doi.org/10.1093/milmed/usz150 Coyle, H.; Traynor, V.; Solowij, N.: Computerized and virtual reality cognitive training for individuals at high risk of cognitive decline: systematic review of the literature. Am. J. Geriatric Psychiatry Off. J. Am. Assoc. Geriatric Psychiatry. 23(4), 335–359 (2015). https://doi.org/10.1016/j.jagp.2014.04.009 Chen, X.; Liu, F.; Lin, S.; Yu, L.; Lin, R.: Effects of virtual reality rehabilitation training on cognitive function and activities of daily living of patients with post-stroke cognitive impairment: a systematic review and meta-analysis. Arch. Phys. Med. Rehab. S0003-9993(22), 00337–9 (2022). https://doi.org/10.1016/j.apmr.2022.03.012 Stroppa, F.; Sarac, M.; Marcheschi, S.; Loconsole, C.; Sotgiu, E.; Solazzi, M.; Buongiorno, D.; Frisoli, A.: Real-time 3D tracker in robot-based neurorehabilitation. Comput. Vis. Pattern Recogn. (2018). https://doi.org/10.1016/B978-0-12-813445-0.00003-4 Minder, F.; Zuberer, A.; Brandeis, D.; Drechsler, R.: Informant-related effects of neurofeedback and cognitive training in children with ADHD including a waiting control phase: a randomized-controlled trial. Eur. Child Adolesc. Psychiatry 27, 1055–1066 (2018). https://doi.org/10.1007/s00787-018-1116-1 Saleem, G.T.; Crasta, J.E.; Slomine, B.S.; Cantarero, G.L.; Suskauer, S.J.: Transcranial direct current stimulation in pediatric motor disorders: a systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 100(4), 724–738 (2019). https://doi.org/10.1016/j.apmr.2018.10.011 Manenti, R.; Cotelli, M.S.; Cobelli, C.; Gobbi, E.; Brambilla, M.; Rusich, D.; Alberici, A.; Padovani, A.; Borroni, B.; Cotelli, M.: Transcranial direct current stimulation combined with cognitive training for the treatment of Parkinson Disease: a randomized, placebo-controlled study. Brain Stimul. 11(6), 1251–1262 (2018). https://doi.org/10.1016/j.brs.2018.07.046 Homer, B; Ober, T. M. Flynn, R.: Children and adolescents' development of executive functions in digital contexts. Proceedings of the Technology, Mind, and Society Conference, TechMindSociety. Association for Computing Machinery. (2018). https://doi.org/10.1145/3183654.3183696 Pasqualotto, A.; Mazzoni, N.; Bentenuto, A.; Mulè, A.; Benso, F.; Venuti, P.: Effects of cognitive training programs on executive function in children and adolescents with autism spectrum disorder: a systematic review. Brain Sci. 11(10), 1280 (2021). https://doi.org/10.3390/brainsci11101280 van de Ven, R.M.; Murre, J.M.; Veltman, D.J.; Schmand, B.A.: Computer-based cognitive training for executive functions after stroke: a systematic review. Front. Hum. Neurosci. (2016). https://doi.org/10.3389/fnhum.2016.00150 Ge, S.; Zhu, Z.; Wu, B., et al.: Technology-based cognitive training and rehabilitation interventions for individuals with mild cognitive impairment: a systematic review. BMC Geriatr. 18, 213 (2018). https://doi.org/10.1186/s12877-018-0893-1 Owen, A.M.; Hampshire, A.; Grahn, J.A.: Putting brain training to the test. Nature 465, 775–778 (2010). https://doi.org/10.1038/nature09042 Lakes, K.D.; Cibrian, F.L.; Schuck, S.E.B.; Nelson, M.; Hayes, G.R.: Digital health interventions for youth with ADHD: a mapping review. Comput. Hum. Behav. Rep. (2022). https://doi.org/10.1016/j.chbr.2022.100174 Cibrian, F.L.; Lakes, K.D.; Schuck, S.E.B.; Hayes, G.R.: The potential for emerging technologies to support self-regulation in children with ADHD: a literature review. Int. J. Child-Comput. Interact. (2022). https://doi.org/10.1016/j.ijcci.2021.100421 Kirk, H.E.; Gray, K.; Riby, D.M.; Cornish, K.M.: Cognitive training as a resolution for early executive function difficulties in children with intellectual disabilities. Res. Dev. Disabil. 38, 145–160 (2015). https://doi.org/10.1016/j.ridd.2014.12.026 Luis-Ruiz, S.; Caldú, X.; Sánchez-Castañeda, C.; Pueyo, R.; Garolera, M.; Jurado, M.Á.: Is cognitive training an effective tool for improving cognitive function and real-life behaviour in healthy children and adolescents? A systematic review. Neurosci. Biobehav. Rev. 116, 268–282 (2020). https://doi.org/10.1016/j.neubiorev.2020.06.019 Slattery, E.J.; O’Callaghan, E.; Ryan, P.; Fortune, D.G.; McAvinue, L.P.: Popular interventions to enhance sustained attention in children and adolescents: a critical systematic review. Neurosci. Biobehav. Rev. 137, 104633 (2022). https://doi.org/10.1016/j.neubiorev.2022.104633 Jahn, F.S.; Skovbye, M.; Obenhausen, K.; Jespersen, A.E.; Miskowiak, K.W.: Cognitive training with fully immersive virtual reality in patients with neurological and psychiatric disorders: A systematic review of randomized controlled trials. Psychiatry Res. 300, 113928 (2021). https://doi.org/10.1016/j.psychres.2021.113928 Bell, I.; Pot-Kolder, R.; Wood, S.J.; Nelson, B.; Acevedo, N.; Stainton, A.; Nicol, K.; Kean, J.; Bryce, S.; Bartholomeusz, C.F.; Watson, A.; Schwartz, O.; Daglas-Georgiou, R.; Walton, C.C.; Martin, D.; Simmons, M.; Zbukvic, I.; Thompson, A.; Nicholas, J.; Alvarez-Jimenez, M.; Allott, K.: Digital technology for addressing cognitive impairment in recent-onset psychosis: a perspective. Schizophrenia Res. Cogn. 28, 100247 (2022). https://doi.org/10.1016/j.scog.2022.100247 Žepič, M.Z.: Improvement of cognitive abilities of older employees with computerized cognitive training (CCT). IFAC-PapersOnLine. 54(13), 651–656 (2021). https://doi.org/10.1016/j.ifacol.2021.10.525 Nguyen, L.; Murphy, K.; Andrews, G.: Cognitive and neural plasticity in old age: A systematic review of evidence from executive functions cognitive training. Ageing Res. Rev. 53, 100912 (2019). https://doi.org/10.1016/j.arr.2019.100912 Yen, H.Y.; Chiu, H.L.: Virtual reality exergames for improving older adults’ cognition and depression: a systematic review and meta-analysis of randomized control trials. J. Am. Med. Dir. Assoc. 22(5), 995–1002 (2021). https://doi.org/10.1016/j.jamda.2021.03.009 Moreno, B.; Muñoz, M.; Cuellar, J.; Domancic, S.; Villanueva, J.: Revisiones Sistemáticas: definición y nociones básicas. Revista clínica de periodoncia, implantología y rehabilitación oral. 11(3), 184–186 (2018) Higgins, J.P.T., Green, S.: Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0, The Cochrane Collaboration (2011). Brereton, P.; Kitchenham, B.A.; Budgen, D.; Turner, M.; Khalil, M.: Lessons from applying the systematic literature review process within the software engineering domain. J. Syst. Softw. 80(4), 571–583 (2007). https://doi.org/10.1016/j.jss.2006.07.009 Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.: The PRISMA group: preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6(6), e1000097 (2009) Uman, L.S.: Systematic reviews and meta-analyses. J. Can. Acad. Child Adolescent Psychiatry. Journal de l’Académie canadienne de psychiatrie de l’enfant et de l’adolescent 20(1), 57–59 (2011) O'Connor, D.; Green, S., Higgins, F.J.: Defining the Review Question and Developing Criteria for Including Studies. In: Higgins, J.P., Green, S. Cochrane Handbook for Systematic Reviews of Interventions (2008). https://doi.org/10.1002/9780470712184.ch5 Anderson, P.: Assessment and development of executive function during childhood. Child Neuropsychol. 8(2), 71–82 (2002). https://doi.org/10.1076/chin.8.2.71.8724 Brown, T.E.: Attention Deficit Disorder: The Unfocused Mind in Children and Adults. Yale University Press (2005) Di Lieto, M.C.; Pecini, C.; Castro, E.; Inguaggiato, E.; Cecchi, F.; Paolo, D.; Cioni, G.; Sgandurra, G.: Empowering executive functions in 5- and 6-year-old typically developing children through educational robotics: an RCT study. Front. Psychol. 10, 3084 (2020). https://doi.org/10.3389/fpsyg.2019.03084 Abt, C.: Serious Game. University Press of América (1987) Gade, M.; Zoelch, C.; Seitz-Stein, K.: Training of visual-spatial working memory in preschool children. Adv. Cogn. Psychol. 13(2), 177–187 (2017). https://doi.org/10.5709/acp-0217-7 Liu, Q.; Zhu, X.; Ziegler, A., et al.: The effects of inhibitory control training for preschoolers on reasoning ability and neural activity. Sci. Rep. 5, 14200 (2015). https://doi.org/10.1038/srep14200 Gray, S.I.; Robertson, J.; Manches, A.; Rajendran, G.: BrainQuest: the use of motivational design theories to create a cognitive training game supporting hot executive function. Int. J. Hum Comput Stud. 127, 124–149 (2019). https://doi.org/10.1016/j.ijhcs.2018.08.004 Wang, C.; Jaeggi, S.; Yang, L.; Zhang, T.; He, X.; Buschkuehl, M.; Zhang, Q.: Narrowing the achievement gap in low-achieving children by targeted executive function training. J. Appl. Dev. Psychol. 63, 87–95 (2019). https://doi.org/10.1016/j.appdev.2019.06.002 Kavanaugh, B.C.; Tuncer, O.; Wexler, B.: Measuring and improving executive functioning in the classroom. J. Cogn. Enhancement. (2018). https://doi.org/10.1007/s41465-018-0095-y Fernández-Molina, M.; Trella, M.; Barros, B.: Experiences with tasks supported by a cognitive e-learning system in preschool: modelling and training on working memory and attentional control. Int. J. Hum. Comput. Stud. 75, 35–51 (2015). https://doi.org/10.1016/j.ijhcs.2014.11.001 Jones, J.S.; Milton, F.; Mostazir, M.; Adlam, A.R.: The academic outcomes of working memory and metacognitive strategy training in children: a double-blind randomized controlled trial. Dev. Sci. 23(4), e12870 (2020). https://doi.org/10.1111/desc.12870 Zhang, H.; Chang, L.; Chen, X.; Ma, L.; Zhou, R.: Working memory updating training improves mathematics performance in middle school students with learning difficulties. Front. Hum. Neurosci. 12, 154 (2018). https://doi.org/10.3389/fnhum.2018.00154 Roberts, G.; Quach, J.; Spencer-Smith, M.; Anderson, P.J.; Gathercole, S.; Gold, L.; Sia, K.L.; Mensah, F.; Rickards, F.; Ainley, J.; Wake, M.: Academic outcomes 2 years after working memory training for children with low working memory: a randomized clinical trial. JAMA Pediatr. 170(5), e154568 (2016). https://doi.org/10.1001/jamapediatrics.2015.4568 Studer-Luethi, B.; Bauer, C.; Perrig, W.J.: Working memory training in children: effectiveness depends on temperament. Mem. Cogn. 44, 171–186 (2016). https://doi.org/10.3758/s13421-015-0548-9 Bamidis, P.D.; Fissler, P.; Papageorgiou, S.G.; Zilidou, V.; Konstantinidis, E.I.; Billis, A.S.; Romanopoulou, E.; Karagianni, M.; Beratis, I.; Tsapanou, A.; Tsilikopoulou, G.; Grigoriadou, E.; Ladas, A.; Kyrillidou, A.; Tsolaki, A.; Frantzidis, C.; Sidiropoulos, E.; Siountas, A.; Matsi, S.; Papatriantafyllou, J.; Kolassa, I.T.: Gains in cognition through combined cognitive and physical training: the role of training dosage and severity of neurocognitive disorder. Front. Aging Neurosci. 7, 152 (2015). https://doi.org/10.3389/fnagi.2015.00152 Żelechowska, D.; Sarzyńska, J.; Nęcka, E.: Working memory training for schoolchildren improves working memory, with no transfer effects on intelligence. J. Intell. 5(4), 36 (2017). https://doi.org/10.3390/jintelligence5040036 Nelwan, M.; Vissers, C.; Kroesbergen, E.H.: Coaching positively influences the effects of working memory training on visual working memory as well as mathematical ability. Neuropsychologia 113, 140–149 (2018). https://doi.org/10.1016/j.neuropsychologia.2018.04.002 Castellar, E.; All, A.; Marez, L.; Looy, J.: Cognitive abilities, digital games and arithmetic performance enhancement: a study comparing the effects of a math game and paper exercises. Comput. Educ. (2015). https://doi.org/10.1016/j.compedu.2014.12.021 Rossignoli, T.; Quiros, M.; Perez, E.; González-Marqués, J.: Schoolchildren’s compensatory strategies and skills in relation to attention and executive function app training. Front. Psychol. 10, 2332 (2019). https://doi.org/10.3389/fpsyg.2019.02332 Sánchez, N.; Castillo, A.; López, J.A.; Pina, V.; Puga, J.L.; Campoy, G.; González-Salinas, C.; Fuentes, L.J.: Computer-based training in math and working memory improves cognitive skills and academic achievement in primary school children: behavioral results. Front. Psychol. 8, 2327 (2018). https://doi.org/10.3389/fpsyg.2017.02327 Wilkinson, H.R.; Smid, C.; Morris, S., et al.: Domain-specific inhibitory control training to improve children’s learning of counterintuitive concepts in mathematics and science. J. Cogn. Enhanc. 4, 296–314 (2020). https://doi.org/10.1007/s41465-019-00161-4 Etherton, J.L.; Oberle, C.D.; Rhoton, J., et al.: Effects of Cogmed working memory training on cognitive performance. Psychol. Res. 83, 1506–1518 (2019). https://doi.org/10.1007/s00426-018-1012-9 Boivin, M.J.; Nakasujja, N.; Sikorskii, A.; Ruiseñor-Escudero, H.; Familiar-Lopez, I.; Walhof, K.; van der Lugt, E.M.; Opoka, R.O.; Giordani, B.: Neuropsychological benefits of computerized cognitive rehabilitation training in Ugandan children surviving severe malaria: a randomized controlled trial. Brain Res. Bull. 145, 117–128 (2019). https://doi.org/10.1016/j.brainresbull.2018.03.002 Weissheimer, J.; Fujii, R.C.; Souza, J.G.: The effects of cognitive training on executive functions and reading in typically-developing children with varied socioeconomic status in Brazil. Ilha do Desterro: A J. Engl. Lang. Lit. Engl. Cult. Stud. 72(3), 85–100 (2019). https://doi.org/10.5007/2175-8026.2019v72n3p85 Farias, A.C.; Cordeiro, M.L.; Felden, E.P.; Bara, T.S.; Benko, C.R.; Coutinho, D.; Martins, L.F.; Ferreira, R.T.; McCracken, J.T.: Attention-memory training yields behavioral and academic improvements in children diagnosed with attention-deficit hyperactivity disorder comorbid with a learning disorder. Neuropsychiatr. Dis. Treat. 13, 1761–1769 (2017). https://doi.org/10.2147/NDT.S136663 Zhao, X.; Jia, L.: Training and transfer effects of interference control training in children and young adults. Psychol. Res. 83(7), 1519–1530 (2019). https://doi.org/10.1007/s00426-018-1007-6 Caviola, S.; Gerotto, G.; Mammarella, I.C.: Computer-based training for improving mental calculation in third- and fifth-graders. Acta Psychol. 171, 118–127 (2016). https://doi.org/10.1016/j.actpsy.2016.10.005 Stanford, E.; Durrleman, S.; Delage, H.: The effect of working memory training on a clinical marker of french-speaking children with developmental language disorder. Am. J. Speech Lang. Pathol. 28(4), 1388–1410 (2019). https://doi.org/10.1044/2019_AJSLP-18-0238 Sánchez-Pérez, N.; Inuggi, A.; Castillo, A.; Campoy, G.; García-Santos, J.M.; González-Salinas, C.; Fuentes, L.J.: Computer-based cognitive training improves brain functional connectivity in the attentional networks: a study with primary school-aged children. Front. Behav. Neurosci. 13, 247 (2019). https://doi.org/10.3389/fnbeh.2019.00247 Wexler, B.; Iseli, M.; Leon, S., et al.: Cognitive priming and cognitive training: immediate and far transfer to academic skills in children. Sci. Rep. 6, 32859 (2016). https://doi.org/10.1038/srep32859 Söderqvist, S.; Bergman Nutley, S.: Working memory training is associated with long term attainments in math and reading. Front. Psychol. 6, 1711 (2015). https://doi.org/10.3389/fpsyg.2015.01711 Carlson-Green, B.; Puig, J.; Bendel, A.: Feasibility and efficacy of an extended trial of home-based working memory training for pediatric brain tumor survivors: a pilot study. Neuro-oncol. Pract. 42, 111–120 (2017). https://doi.org/10.1093/NOP/NPW015 Conklin, H.M.; Ashford, J.M.; Clark, K.N.; Martin-Elbahesh, K.; Hardy, K.K.; Merchant, T.E.; Ogg, R.J.; Jeha, S.; Huang, L.; Zhang, H.: Long-Term efficacy of computerized cognitive training among survivors of childhood cancer: a single-blind randomized controlled trial. J. Pediatr. Psychol. 42(2), 220–231 (2017). https://doi.org/10.1093/jpepsy/jsw057 Cox, L.E.; Ashford, J.M.; Clark, K.N.; Martin-Elbahesh, K.; Hardy, K.K.; Merchant, T.E.; Ogg, R.J.; Jeha, S.; Willard, V.W.; Huang, L.; Zhang, H.; Conklin, H.M.: Feasibility and acceptability of a remotely administered computerized intervention to address cognitive late effects among childhood cancer survivors. Neuro-oncol. Pract. 2(2), 78–87 (2015). https://doi.org/10.1093/nop/npu036 Simone, M.; Viterbo, R.G.; Margari, L.; Iaffaldano, P.: Computer-assisted rehabilitation of attention in pediatric multiple sclerosis and ADHD patients: a pilot trial. BMC Neurol. 18(1), 82 (2018). https://doi.org/10.1186/s12883-018-1087-3 Bomyea, J.; Stein, M.B.; Lang, A.J.: Interference control training for PTSD: a randomized controlled trial of a novel computer-based intervention. J. Anxiety Disord. 34, 33–42 (2015). https://doi.org/10.1016/j.janxdis.2015.05.010 Lee, H.J.; Espil, F.M.; Bauer, C.C.; Siwiec, S.G.; Woods, D.W.: Computerized response inhibition training for children with trichotillomania. Psychiatry Res. 262, 20–27 (2017). https://doi.org/10.1016/j.psychres.2017.12.070 Yoncheva, Y.N.; Hardy, K.K.; Lurie, D.J.; Somandepalli, K.; Yang, L.; Vezina, G.; Kadom, N.; Packer, R.J.; Milham, M.P.; Castellanos, F.X.; Acosta, M.T.: Computerized cognitive training for children with neurofibromatosis type 1: a pilot resting-state fMRI study. Psychiatry Res. Neuroimaging. 266, 53–58 (2017). https://doi.org/10.1016/j.pscychresns.2017.06.003 Jordan, L.; Siciliano, R.; Cole, D.; Lee, C.; Patel, N.; Murphy, L.; Markham, L.; Prussien, K.; Gindville, M.; Compas, B.: Cognitive training in children with hypoplastic left heart syndrome: a pilot randomized trial. Prog. Pediatr. Cardiol. (2019). https://doi.org/10.1016/j.ppedcard.2019.101185 Kirk, H.; Gray, K.; Ellis, K.; Taffe, J.; Cornish, K.: Impact of attention training on academic achievement, executive functioning, and behavior: a randomized controlled trial. Am. J. Intellect. Dev. Disabil. 122(2), 97–117 (2017). https://doi.org/10.1352/1944-7558-122.2.97 Spaniol, M.M.; Shalev, L.; Kossyvaki, L.; Mevorach, C.: Attention training in autism as a potential approach to improving academic performance: a school-based pilot study. J. Autism. Dev. Disord. 48(2), 592–610 (2018). https://doi.org/10.1007/s10803-017-3371-2 Benyakorn, S.; Calub, C.A.; Riley, S.J.; Schneider, A.; Iosif, A.M.; Solomon, M.; Hessl, D.; Schweitzer, J.B.: Computerized cognitive training in children with autism and intellectual disabilities: feasibility and satisfaction study. JMIR Mental Health. 5(2), e40 (2018). https://doi.org/10.2196/mental.9564 Dovis, S.; Van der Oord, S.; Wiers, R.W.; Prins, P.J.: Improving executive functioning in children with ADHD: training multiple executive functions within the context of a computer game: a randomized double-blind placebo controlled trial. PLoS ONE 10(4), e0121651 (2015). https://doi.org/10.1371/journal.pone.0121651 Kofler, M.J.; Sarver, D.E.; Austin, K.E.; Schaefer, H.S.; Holland, E.; Aduen, P.A.; Wells, E.L.; Soto, E.F.; Irwin, L.N.; Schatschneider, C.; Lonigan, C.J.: Can working memory training work for ADHD? Development of central executive training and comparison with behavioral parent training. J. Consult. Clin. Psychol. 86(12), 964–979 (2018). https://doi.org/10.1037/ccp0000308 Davis, N.O.; Bower, J.; Kollins, S.H.: Proof-of-concept study of an at-home, engaging, digital intervention for pediatric ADHD. PLoS ONE 13(1), e0189749 (2018). https://doi.org/10.1371/journal.pone.0189749 Kollins, S.; DeLoss, D.; Canadas, E.; Lutz, J.; Findling, R.; Keefe, R.; Epstein, J.; Cutler, A.; Faraone, S.: A novel digital intervention for actively reducing severity of paediatric ADHD (STARS-ADHD): a randomised controlled trial. The Lancet Digital Health. (2020). https://doi.org/10.1016/S2589-7500(20)30017-0 Moore, A.L.; Carpenter, D.M., 2nd.; Miller, T.M.; Ledbetter, C.: Clinician-delivered cognitive training for children with attention problems: effects on cognition and behavior from the ThinkRx randomized controlled trial. Neuropsychiatr. Dis. Treat. 14, 1671–1683 (2018). https://doi.org/10.2147/NDT.S165418 Jedlicka, E.J.: LearningRx cognitive training for children and adolescents ages 5–18: effects on academic skills, behavior, and cognition. Front. Educ. (2017). https://doi.org/10.3389/feduc.2017.00062 Carpenter, D.M.; Ledbetter, C.; Moore, A.L.: LearningRx cognitive training effects in children ages 8–14: a randomized controlled trial. Appl. Cogn. Psychol. 30(5), 815–826 (2016). https://doi.org/10.1002/acp.3257 Bul, K.; Doove, L.L.; Franken, I.; Oord, S.V.; Kato, P.M.; Maras, A.: A serious game for children with Attention Deficit Hyperactivity Disorder: Who benefits the most? PLoS ONE 13(3), e0193681 (2018). https://doi.org/10.1371/journal.pone.0193681 Bul, K.C.; Kato, P.M.; Van der Oord, S.; Danckaerts, M.; Vreeke, L.J.; Willems, A.; van Oers, H.J.; Van Den Heuvel, R.; Birnie, D.; Van Amelsvoort, T.A.; Franken, I.H.; Maras, A.: Behavioral outcome effects of serious gaming as an adjunct to treatment for children with attention-deficit/hyperactivity disorder: a randomized controlled trial. J. Med. Internet Res. 18(2), e26 (2016). https://doi.org/10.2196/jmir.5173 Kolodny, T.; Ashkenazi, Y.; Farhi, M., et al.: Computerized progressive attention training (CPAT) vs. active control in adults with ADHD. J. Cogn. Enhanc. 1, 526–538 (2017). https://doi.org/10.1007/s41465-017-0056-x de Oliviera Rosa, V.D.; Franco, A.R.; Júnior, G.A.; Moreira-Maia, C.R.; Wagner, F.; Simioni, A.; Bassotto, C.D.; Moritz, G.R.; Aguzzoli, C.S.; Buchweitz, A.; Schmitz, M.; Rubia, K.; Rohde, L.A.: Effects of computerized cognitive training as add-on treatment to stimulants in ADHD: a pilot fMRI study. Brain Imaging Behav. 14(5), 1933–1944 (2019). https://doi.org/10.1007/s11682-019-00137-0 Anderson, P.J.; Lee, K.J.; Roberts, G.; Spencer-Smith, M.M.; Thompson, D.K.; Seal, M.L.; Nosarti, C.; Grehan, A.; Josev, E.K.; Gathercole, S.; Doyle, L.W.; Pascoe, L.: Long-term academic functioning following cogmed working memory training for children born extremely preterm: a randomized controlled trial. J. Pediatr. 202, 92-97.e4 (2018). https://doi.org/10.1016/j.jpeds.2018.07.003 van Houdt, C.A.; van Wassenaer-Leemhuis, A.G.; Oosterlaan, J.; Königs, M.; Koopman-Esseboom, C.; Laarman, A.; van Kaam, A.H.; Aarnoudse-Moens, C.: Executive function training in very preterm children: a randomized controlled trial. Eur. Child Adolesc. Psychiatry 30(5), 785–797 (2021). https://doi.org/10.1007/s00787-020-01561-0 Bikic, A.; Leckman, J.F.; Christensen, T.Ø.; Bilenberg, N.; Dalsgaard, S.: Attention and executive functions computer training for attention-deficit/hyperactivity disorder (ADHD): results from a randomized, controlled trial. Eur. Child Adolesc. Psychiatry. 27(12), 1563–1574 (2018). https://doi.org/10.1007/s00787-018-1151-y Verbeken, S.; Braet, C.; Naets, T.; Houben, K.; Boendermake, W.; Zeepreventorium, V.Z.: Computer training of attention and inhibition for youngsters with obesity: a pilot study. Appetite 1(123), 439–447 (2018). https://doi.org/10.1016/j.appet.2017.12.029 Powell, G.; Wass, S.V.; Erichsen, J.T.; Leekam, S.R.: First evidence of the feasibility of gaze-contingent attention training for school children with autism. Aut. Int. J. Res. Pract. 20(8), 927–937 (2016). https://doi.org/10.1177/1362361315617880 Hessl, D.; Schweitzer, J.B.; Nguyen, D.V., et al.: Cognitive training for children and adolescents with fragile X syndrome: a randomized controlled trial of Cogmed. J. Neurodevelop. Disord. 11, 4 (2019). https://doi.org/10.1186/s11689-019-9264-2 Stevens, M.C.; Gaynor, A.; Bessette, K.L.; Pearlson, G.D.: A preliminary study of the effects of working memory training on brain function. Brain Imaging Behav. 10(2), 387–407 (2016). https://doi.org/10.1007/s11682-015-9416-2 Homer, B.D.; Plass, J.L.; Raffaele, C.; Ober, T.; Ali, A.: Improving high school students’ executive functions through digital game play. Comput. Educ. (2017). https://doi.org/10.1016/j.compedu.2017.09.011 Homer, B.D.; Plass, J.L.; Rose, M.C.; MacNamara, A.P.; Pawar, S.; Ober, T.M.: Activating adolescents’ “hot” executive functions in a digital game to train cognitive skills: the effects of age and prior abilities. Cogn. Dev. 49, 20–32 (2019). https://doi.org/10.1016/j.cogdev.2018.11.005 Corti, C.; Poggi, G.; Romaniello, R.; Strazzer, S.; Urgesi, C.; Borgatti, R.; Bardoni, A.: Feasibility of a home-based computerized cognitive training for pediatric patients with congenital or acquired brain damage: an explorative study. PLoS ONE 13(6), e0199001 (2018). https://doi.org/10.1371/journal.pone.0199001 Corti, C.; Urgesi, C.; Poggi, G., et al.: Home-based cognitive training in pediatric patients with acquired brain injury: preliminary results on efficacy of a randomized clinical trial. Sci. Rep. 10, 1391 (2020). https://doi.org/10.1038/s41598-020-57952-5 Papanastasiou, G.; Drigas, A.; Skianis, C.; Lytras, M.: Serious games in K-12 education: Benefits and impacts on students with attention, memory and developmental disabilities. Prog. Electron. Lib. Inf. Syst. 51(4), 424–440 (2017). https://doi.org/10.1108/PROG-02-2016-0020 Ackermann, S.; Halfon, O.; Fornari, E.; Urben, S.; Bader, M.: Cognitive Working Memory Training (CWMT) in adolescents suffering from Attention-Deficit/Hyperactivity Disorder (ADHD): a controlled trial taking into account concomitant medication effects. Psychiatry Res. 269, 79–85 (2018). https://doi.org/10.1016/j.psychres.2018.07.036 Rowlands, A.; Fisher, M.; Mishra, J.; Nahum, M.; Brandrett, B.; Reinke, M.; Caldwell, M.; Kiehl, K.A.; Vinogradov, S.: Cognitive training for very high risk incarcerated adolescent males. Front. Psychiatry. (2020). https://doi.org/10.3389/fpsyt.2020.00225 Moore, A.L.; Carpenter, D.M.; Miller, T.M., et al.: Comparing two methods of delivering thinkrx cognitive training to children ages 8–14: a randomized controlled trial of equivalency. J. Cogn. Enhanc. 3, 261–270 (2019). https://doi.org/10.1007/s41465-018-0094-z Linares, R.; Borella, E.; Lechuga, M.T.; Carretti, B.; Pelegrina, S.: Nearest transfer effects of working memory training: a comparison of two programs focused on working memory updating. PLoS ONE 14(2), e0211321 (2019). https://doi.org/10.1371/journal.pone.0211321 Schwarb, H.; Nail, J.; Schumacher, E.H.: Working memory training improves visual short-term memory capacity. Psychol. Res. 80, 128–148 (2016). https://doi.org/10.1007/s00426-015-0648-y Waris, O.; Soveri, A.; Laine, M.: Transfer after working memory updating training. PLoS ONE 10(9), e0138734 (2015). https://doi.org/10.1371/journal.pone.0138734 Hogrefe, A.B.; Studer-Luethi, B.; Kodzhabashev, S., et al.: Mechanisms underlying n-back training: response consistency during training influences training outcome. J. Cogn. Enhanc. 1, 406–418 (2017). https://doi.org/10.1007/s41465-017-0042-3 Hosseini, S.; Pritchard-Berman, M.; Sosa, N.; Ceja, A.; Kesler, S.R.: Task-based neurofeedback training: a novel approach toward training executive functions. Neuroimage 134, 153–159 (2016). https://doi.org/10.1016/j.neuroimage.2016.03.035 Baniqued, P.L.; Allen, C.M.; Kranz, M.B.; Johnson, K.; Sipolins, A.; Dickens, C.; Ward, N.; Geyer, A.; Kramer, A.F.: Working memory, reasoning, and task switching training: Transfer effects, limitations, and great expectations? PLoS ONE 10(11), e0142169 (2015). https://doi.org/10.1371/journal.pone.0142169 Zwilling, C.E.; Daugherty, A.M.; Hillman, C.H., et al.: Enhanced decision-making through multimodal training. NPJ Sci. Learn. 4, 11 (2019). https://doi.org/10.1038/s41539-019-0049-x Tusch, E.S.; Alperin, B.R.; Ryan, E.; Holcomb, P.J.; Mohammed, A.H.; Daffner, K.R.: Changes in neural activity underlying working memory after computerized cognitive training in older adults. Front. Aging Neurosci. 8, 255 (2016). https://doi.org/10.3389/fnagi.2016.00255 Talanow, T.; Ettinger, U.: Effects of task repetition but no transfer of inhibitory control training in healthy adults. Acta Psychol. 187, 37–53 (2018). https://doi.org/10.1016/j.actpsy.2018.04.016 Olfers, K.; Band, G.: Game-based training of flexibility and attention improves task-switch performance: near and far transfer of cognitive training in an EEG study. Psychol. Res. 82(1), 186–202 (2018). https://doi.org/10.1007/s00426-017-0933-z Shahar, N.; Pereg, M.; Teodorescu, A.R.; Moran, R.; Meiran, N.: Formation of abstract task representations: exploring dosage and mechanisms of working memory training effects. Cognition 181, 151–159 (2018). https://doi.org/10.1016/j.cognition.2018.08.007 Foster, J.L.; Harrison, T.L.; Hicks, K.L.; Draheim, C.; Redick, T.; Engle, R.: Do the effects of working memory training depend on baseline ability level? J. Exp. Psychol. Learn. Mem. Cogn. 43, 1677–1689 (2017). https://doi.org/10.1037/xlm0000426 Wells, A.; Parong, J.; Mayer, R.E.: Limits on training inhibitory control with a focused video game. J. Cogn. Enhanc. 5, 83–98 (2021). https://doi.org/10.1007/s41465-020-00184-2 Martincevic, M.; Vranic, A.: Casual game or cognitive gain: multitask casual game as a training for young adults. J. Cogn. Enhanc. 4, 434–445 (2020). https://doi.org/10.1007/s41465- Schmicker, M.; Müller, P.; Schwefel, M.; Müller, N.G.: Attentional filter training but not memory training improves decision-making. Front. Hum. Neurosci. 11, 138 (2017). https://doi.org/10.3389/fnhum.2017.00138 Wilkinson, A.; Yang, L.: Inhibition plasticity in older adults: practice and transfer effects using a multiple task approach. Neural Plast. (2016). https://doi.org/10.1155/2016/9696402 Piskulic, D.; Barbato, M.; Liu, L.; Addington, J.: Pilot study of cognitive remediation therapy on cognition in young people at clinical high risk of psychosis. Psychiatry 30(225), 93–98 (2015). https://doi.org/10.1016/j.psychres.2014.10.021 Harvey, P.; Balzer, A.; Kotwicki, R.: Training engagement, baseline cognitive functioning, and cognitive gains with computerized cognitive training: a cross-diagnostic study. Schizophrenia Res. Cogn. (2019). https://doi.org/10.1016/j.scog.2019.100150 Kashyap, H.; Reddy, P.; Mandadi, S.; Narayanaswamy, J.; Sudhir, P.; Reddy, Y.C.: Cognitive training for neurocognitive and functional impairments in obsessive compulsive disorder: a case report. J. Obsessive-Compul. Relat. Disord. (2019). https://doi.org/10.1016/j.jocrd.2019.100480 Liu, Z.X.; Glizer, D.; Tannock, R.; Woltering, S.: EEG alpha power during maintenance of information in working memory in adults with ADHD and its plasticity due to working memory training: a randomized controlled trial. Clin. Neurophysiol. 127(2), 1307–1320 (2016). https://doi.org/10.1016/j.clinph.2015.10.032 Cohen, N.; Margulies, D.; Ashkenazi, S.; Schäfer, A.; Taubert, M.; Henik, A.; Villringer, A.; Okon-Singer, H.: Using executive control training to suppress amygdala reactivity to aversive information. Neuroimage 125, 1022–1031 (2016). https://doi.org/10.1016/j.neuroimage.2015.10.069 Rahmani, M.; Rahimian Boogar, I.; Talepasand, S.; Nokani, M.: Comparing the effectiveness of computer-based, manual-based, and combined cognitive rehabilitation on cognitive functions in relapsing-remitting multiple sclerosis patients. Basic Clin. Neurosci. 11(1), 99–110 (2020). https://doi.org/10.32598/bcn.9.10.430 Pedullà, L.; Brichetto, G.; Tacchino, A.; Vassallo, C.; Zaratin, P.; Battaglia, M.A.; Bonzano, L.; Bove, M.: Adaptive vs. non-adaptive cognitive training by means of a personalized App: a randomized trial in people with multiple sclerosis. J. NeuroEngineering Rehabil. 13, 88 (2016). https://doi.org/10.1186/s12984-016-0193-y Pérez-Martín, M.Y.; González-Platas, M.; Eguía-Del Río, P.; Croissier-Elías, C.; Jiménez-Sosa, A.: Efficacy of a short cognitive training program in patients with multiple sclerosis. Neuropsychiatr. Dis. Treat. 13, 245–252 (2017). https://doi.org/10.2147/NDT.S124448 Messinis, L.; Nasios, G.; Kosmidis, M.H.; Zampakis, P.; Malefaki, S.; Ntoskou, K.; Nousia, A.; Bakirtzis, C.; Grigoriadis, N.; Gourzis, P.; Papathanasopoulos, P.: Efficacy of a computer-assisted cognitive rehabilitation intervention in relapsing-remitting multiple sclerosis patients: a multicenter randomized controlled trial. Behav. Neurol. (2017). https://doi.org/10.1155/2017/5919841 Campbell, J.; Langdon, D.; Cercignani, M.; Rashid, W.: A randomised controlled trial of efficacy of cognitive rehabilitation in multiple sclerosis: a cognitive, behavioural, and MRI study. Neural Plast. (2016). https://doi.org/10.1155/2016/4292585 Bove, R.M.; Rush, G.; Zhao, C.; Rowles, W.; Garcha, P.; Morrissey, J.; Schembri, A.; Alailima, T.; Langdon, D.; Possin, K.; Gazzaley, A.; Feinstein, A.; Anguera, J.: A videogame-based digital therapeutic to improve processing speed in people with multiple sclerosis: a feasibility study. Neurol. Ther. 8(1), 135–145 (2019). https://doi.org/10.1007/s40120-018-0121-0 Bell, M.D.; Laws, H.; Pittman, B., et al.: Comparison of focused cognitive training and portable “brain-games” on functional outcomes for vocational rehabilitation participants. Sci. Rep. 8, 1779 (2018). https://doi.org/10.1038/s41598-018-20094-w Michalopoulou, P.G.; Lewis, S.W.; Drake, R.J.; Reichenberg, A.; Emsley, R.; Kalpakidou, A.K.; Lees, J.; Bobin, T.; Gilleen, J.K.; Pandina, G.; Applegate, E.; Wykes, T.; Kapur, S.: Modafinil combined with cognitive training: pharmacological augmentation of cognitive training in schizophrenia. Eur. Neuropsychopharmacol. J. Eur. College Neuropsychopharmacol. 25(8), 1178–1189 (2015). https://doi.org/10.1016/j.euroneuro.2015.03.009 Biagianti, B.; Fisher, M.; Howard, L.; Rowlands, A.; Vinogradov, S.; Woolley, J.: Feasibility and preliminary efficacy of remotely delivering cognitive training to people with schizophrenia using tablets. Schizophrenia Res. Cogn. 10, 7–14 (2017). https://doi.org/10.1016/j.scog.2017.07.003 Jahshan, C.; Vinogradov, S.; Wynn, J.K.; Hellemann, G.; Green, M.F.: A randomized controlled trial comparing a “bottom-up” and “top-down” approach to cognitive training in schizophrenia. J. Psychiatr Res. 109, 118–125 (2019). https://doi.org/10.1016/j.jpsychires.2018.11.027 Fernandez-Gonzalo, S.; Turon, M.; Jodar, M.; Pousa, E.; Hernandez-Rambla, C.; García, R.; Palao, D.A.: A new computerized cognitive and social cognition training specifically designed for patients with schizophrenia/schizoaffective disorder in early stages of illness: a pilot study. Psychiatry Res. 228(3), 501–509 (2015). https://doi.org/10.1016/j.psychres.2015.06.007 Fernandez-Gonzalo, S.; Turon, M.; Jodar, M.; Pousa, E.; Hernandez, C.; García, R.; Palao, D.: A new computerized cognitive and social cognition training specifically designed for patients with schizophrenia/schizoaffective disorder in early stages of illness: a pilot study. Psychiatry Res. 228(3), 501–509 (2015). https://doi.org/10.1016/j.psychres.2015.06.007 Reeder, C.; Huddy, V.; Cella, M.; Taylor, R.; Greenwood, K.; Landau, S.; Wykes, T.: A new generation computerised metacognitive cognitive remediation programme for schizophrenia (CIRCuiTS): a randomised controlled trial. Psychol. Med. 47(15), 1–11 (2017). https://doi.org/10.1017/S0033291717001234 Palumbo, D.; Mucci, A.; Giordano, G.M.; Piegari, G.; Aiello, C.; Pietrafesa, D.; Annarumma, N.; Chieffi, M.; Cella, M.; Galderisi, S.: The efficacy, feasibility and acceptability of a remotely accessible use of CIRCuiTS, a computerized cognitive remediation therapy program for schizophrenia: a pilot study. Neuropsychiatr. Dis. Treat. 15, 3103–3113 (2019). https://doi.org/10.2147/NDT.S221690 Matsuoka, K.; Morimoto, T.; Matsuda, Y.; Yasuno, F.; Taoka, T.; Miyasaka, T.; Yoshikawa, H.; Takahashi, M.; Kitamura, S.; Kichikawa, K.; Kishimoto, T.: Computer-assisted cognitive remediation therapy for patients with schizophrenia induces microstructural changes in cerebellar regions involved in cognitive functions. Psychiatry Res. Neuroimaging. 292, 41–46 (2019). https://doi.org/10.1016/j.pscychresns.2019.09.001 Mahncke, H.W.; Kim, S.J.; Rose, A.; Stasio, C.; Buckley, P.; Caroff, S.; Duncan, E.; Yasmin, S.; Jarskog, L.F.; Lamberti, J.S.; Nuechterlein, K.; Strassnig, M.; Velligan, D.; Ventura, J.; Walker, T.; Stroup, T.S.; Keefe, R.S.E.: Evaluation of a plasticity-based cognitive training program in schizophrenia: results from the eCaesar trial. Schizophr. Res. 208, 182–189 (2019). https://doi.org/10.1016/j.schres.2019.03.006 Hotton, M.; Derakshan, N.; Fox, E.: A randomised controlled trial investigating the benefits of adaptive working memory training for working memory capacity and attentional control in high worriers. Behav. Res. Ther. 100, 67–77 (2018). https://doi.org/10.1016/j.brat.2017.10.011 Listunova, L.; Kienzle, J.; Bartolovic, M.; Jaehn, A.; Grützner, T.M.; Wolf, R.C.; Aschenbrenner, S.; Weisbrod, M.; Roesch-Ely, D.: Cognitive remediation therapy for partially remitted unipolar depression: a single-blind randomized controlled trial. J. Affect. Disord. 276, 316–326 (2020). https://doi.org/10.1016/j.jad.2020.07.008 Motter, J.N.; Grinberg, A.; Lieberman, D.H.; Iqnaibi, W.B.; Sneed, J.R.: Computerized cognitive training in young adults with depressive symptoms: effects on mood, cognition, and everyday functioning. J. Affect Disord. 15(245), 28–37 (2019). https://doi.org/10.1016/j.jad.2018.10.109 Fonzo, G.A.; Fine, N.B.; Wright, R.N.; Achituv, M.; Zaiko, Y.V.; Merin, O.; Shalev, A.Y.; Etkin, A.: Internet-delivered computerized cognitive & affective remediation training for the treatment of acute and chronic posttraumatic stress disorder: two randomized clinical trials. J. Psychiatr. Res. 115, 82–89 (2019). https://doi.org/10.1016/j.jpsychires.2019.05.007 Fernandez, E.; Bergado Rosado, J.A.; Rodriguez Perez, D.; Salazar Santana, S.; Torres Aguilar, M.; Bringas, M.L.: Effectiveness of a computer-based training program of attention and memory in patients with acquired brain damage. Behav. Sci. 8(1), 4 (2017). https://doi.org/10.3390/bs8010004 Välimäki, M.; Mishina, K.; Kaakinen, J.K.; Holm, S.K.; Vahlo, J.; Kirjonen, M.; Pekurinen, V.; Tenovuo, O.; Korkeila, J.; Hämäläinen, H.; Sarajuuri, J.; Rantanen, P.; Orenius, T.; Koponen, A.: Digital gaming for improving the functioning of people with traumatic brain injury: randomized clinical feasibility study. J. Med. Internet Res. 20(3), e77 (2018). https://doi.org/10.2196/jmir.7618 Best, M.W.; Gale, D.; Tran, T.; Haque, M.K.; Bowie, C.R.: Brief executive function training for individuals with severe mental illness: effects on EEG synchronization and executive functioning. Schizophr. Res. 203, 32–40 (2019). https://doi.org/10.1016/j.schres.2017.08.052 van de Ven, R.M.; Schmand, B.; Groet, E.; Veltman, D.J.; Murre, J.M.: The effect of computer-based cognitive flexibility training on recovery of executive function after stroke: rationale, design and methods of the TAPASS study. BMC Neurol. 15, 144 (2015). https://doi.org/10.1186/s12883-015-0397-y De Luca, R.; Leonardi, S.; Spadaro, L.; Russo, M.; Aragona, B.; Torrisi, M.; Maggio, M.G.; Bramanti, A.; Naro, A.; De Cola, M.C.; Calabrò, R.S.: Improving cognitive function in patients with stroke: Can computerized training be the future? J. Stroke Cerebrovasc. Dis. (2017). https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.11.008 van de Ven, R.M.; Murre, J.; Buitenweg, J.; Veltman, D.J.; Aaronson, J.A.; Nijboer, T.; Kruiper-Doesborgh, S.; van Bennekom, C.; Ridderinkhof, K.R.; Schmand, B.: The influence of computer-based cognitive flexibility training on subjective cognitive well-being after stroke: a multi-center randomized controlled trial. PLoS ONE 12(11), e0187582 (2017). https://doi.org/10.1371/journal.pone.0187582 Khemiri, L.; Brynte, C.; Stunkel, A.; Klingberg, T.; Jayaram-Lindström, N.: Working memory training in alcohol use disorder: a randomized controlled trial. Alcohol. Clin. Exp. Res. 43(1), 135–146 (2019). https://doi.org/10.1111/acer.13910 Rass, O.; Schacht, R.L.; Buckheit, K.; Johnson, M.W.; Strain, E.C.; Mintzer, M.Z.: A randomized controlled trial of the effects of working memory training in methadone maintenance patients. Drug Alcohol Depend. 156, 38–46 (2015). https://doi.org/10.1016/j.drugalcdep.2015.08.012 Brooks, S.J.; Wiemerslage, L.; Burch, K.; Maiorana, S.; Cocolas, E.; Schiöth, H.; Kamaloodien, K.; Stein, D.: The impact of cognitive training in substance use disorder: the effect of working memory training on impulse control in methamphetamine users. Psychopharmacology 234, 1911–1921 (2017). https://doi.org/10.1007/s00213-017-4597-6 Valls-Serrano, C.; Caracuel, A.; Verdejo-Garcia, A.: Goal Management Training and Mindfulness Meditation improve executive functions and transfer to ecological tasks of daily life in polysubstance users enrolled in therapeutic community treatment. Drug Alcohol Depend. 1(165), 9–14 (2016). https://doi.org/10.1016/j.drugalcdep.2016.04.040 Marceau, E.M.; Berry, J.; Lunn, J.; Kelly, P.J.; Solowij, N.: Cognitive remediation improves executive functions, self-regulation and quality of life in residents of a substance use disorder therapeutic community. Drug Alcohol Depend. 1(178), 150–158 (2017). https://doi.org/10.1016/j.drugalcdep.2017.04.023 Loughead, J.; Falcone, M.; Wileyto, E.P.; Albelda, B.; Audrain-McGovern, J.; Cao, W.; Kurtz, M.M.; Gur, R.C.; Lerman, C.: Can brain games help smokers quit?: Results of a randomized clinical trial. Drug Alcohol Depend. 168, 112–118 (2016). https://doi.org/10.1016/j.drugalcdep.2016.08.621 Damholdt, M.F.; Mehlsen, M.; O’Toole, M.S.; Andreasen, R.K.; Pedersen, A.D.; Zachariae, R.: Web-based cognitive training for breast cancer survivors with cognitive complaints-a randomized controlled trial. Psychooncology 25(11), 1293–1300 (2016). https://doi.org/10.1002/pon.4058 Yhnell, E.; Furby, H.; Lowe, R.S.; Brookes-Howell, L.C.; Drew, C.J.G.; Playle, R.; Watson, G.; Metzler-Baddeley, C.; Rosser, A.E.; Busse, M.E.: A randomised feasibility study of computerised cognitive training as a therapeutic intervention for people with Huntington’s disease (CogTrainHD). Pilot Feasibility Stud. 19(6), 88 (2020). https://doi.org/10.1186/s40814-020-00623-z Towe, S.L.; Hartsock, J.T.; Xu, Y.; Meade, C.S.: Web-based cognitive training to improve working memory in persons with co-occurring HIV infection and cocaine use disorder: outcomes from a randomized controlled trial. AIDS Behav. (2020). https://doi.org/10.1007/s10461-020-02993-0 Towe, S.L.; Patel, P.; Meade, C.S.: The acceptability and potential utility of cognitive training to improve working memory in persons living with HIV: a preliminary randomized trial. J. Assoc. Nurses AIDS Care: JANAC 28(4), 633–643 (2017). https://doi.org/10.1016/j.jana.2017.03.007 Ballesteros, S.; Mayas, J.; Prieto, A.; Ruiz-Marquez, E.; Toril, P.; Reales, J.: Effects of video game training on measures of selective attention and working memory in older adults: results from a randomized controlled trial. Front. Aging Neurosci. (2017). https://doi.org/10.3389/fnagi.2017.00354 Brooks, S.J.; Burch, K.H.; Maiorana, S.A.; Cocolas, E.; Schioth, H.B.; Nilsson, E.K.; Kamaloodien, K.; Stein, D.J.: Psychological intervention with working memory training increases basal ganglia volume: a VBM study of inpatient treatment for methamphetamine use. NeuroImage. Clin. 12, 478–491 (2016). https://doi.org/10.1016/j.nicl.2016.08.019 Toril, P.; Reales, J.M.; Mayas, J.; Ballesteros, S.: Video game training enhances visuospatial working memory and episodic memory in older adults. Front. Hum. Neurosci. 10, 206 (2016). https://doi.org/10.3389/fnhum.2016.00206 Buitenweg, J.; van de Ven, R.M.; Prinssen, S.; Murre, J.; Ridderinkhof, K.R.: Cognitive flexibility training: a large-scale multimodal adaptive active-control intervention study in healthy older adults. Front. Hum. Neurosci. 11, 529 (2017). https://doi.org/10.3389/fnhum.2017.00529 Hay, M.; Adam, N.; Bocca, M., et al.: Effectiveness of two cognitive training programs on the performance of older drivers with a cognitive self-assessment bias. Eur. Transp. Res. Rev. 8, 20 (2016). https://doi.org/10.1007/s12544-016-0207-7 Matysiak, O.; Kroemeke, A.; Brzezicka, A.: Working memory capacity as a predictor of cognitive training efficacy in the elderly population. Front. Aging Neurosci. 11, 126 (2019). https://doi.org/10.3389/fnagi.2019.00126 Hering, A.; Meuleman, B.; Bürki, C., et al.: Improving older adults’ working memory: the influence of age and crystallized intelligence on training outcomes. J. Cogn. Enhanc. 1, 358–373 (2017). https://doi.org/10.1007/s41465-017-0041-4 Grönholm-Nyman, P.; Soveri, A.; Rinne, J.O.; Ek, E.; Nyholm, A.; Stigsdotter Neely, A.; Laine, M.: Limited effects of set shifting training in healthy older adults. Front. Aging Neurosci. 9, 69 (2017). https://doi.org/10.3389/fnagi.2017.00069 Gajewski, P.; Falkenstein, M.: ERP and behavioral effects of physical and cognitive training on working memory in aging: a randomized controlled study. Neural Plast. (2018). https://doi.org/10.1155/2018/3454835 Weicker, J.; Hudl, N.; Frisch, S.; Lepsien, J.; Mueller, K.; Villringer, A.; Thöne-Otto, A.: WOME: theory-based working memory training: a placebo-controlled, double-blind evaluation in older adults. Front. Aging Neurosci. 10, 247 (2018). https://doi.org/10.3389/fnagi.2018.00247 Payne, B.R.; Stine-Morrow, E.: The effects of home-based cognitive training on verbal working memory and language comprehension in older adulthood. Front. Aging Neurosci. 9, 256 (2017). https://doi.org/10.3389/fnagi.2017.00256 De Luca, R.; Bramanti, A.; De Cola, M.C.: Cognitive training for patients with dementia living in a sicilian nursing home: a novel web-based approach. Neurol. Sci. 37, 1685–1691 (2016). https://doi.org/10.1007/s10072-016-2659-x Kim, H.; Chey, J.; Lee, S.: Effects of multicomponent training of cognitive control on cognitive function and brain activation in older adults. Neurosci. Res. 124, 8–15 (2017). https://doi.org/10.1016/j.neures.2017.05.004 Requena, C.; Rebok, G.W.: Evaluating successful aging in older people who participated in computerized or paper-and-pencil memory training: the memoria mejor program. Int. J. Environ. Res. Public Health 16(2), 191 (2019). https://doi.org/10.3390/ijerph16020191 Liao, Y.Y.; Chen, I.H.; Lin, Y.J.; Chen, Y.; Hsu, W.C.: Effects of virtual reality-based physical and cognitive training on executive function and dual-task gait performance in older adults with mild cognitive impairment: a randomized control trial. Front. Aging Neurosci. 11, 162 (2019). https://doi.org/10.3389/fnagi.2019.00162 Ettenhofer, M.L.; Guise, B.; Brandler, B.; Bittner, K.; Gimbel, S.I.; Cordero, E.; Schmitt, S.; Williams, K.; Cox, D.; Roy, M.J.; Chan, L.: Neurocognitive driving rehabilitation in virtual environments (NeuroDRIVE): a pilot clinical trial for chronic traumatic brain injury. NeuroRehabilitation 44(4), 531–544 (2019). https://doi.org/10.3233/NRE-192718 Manera, V.; Chapoulie, E.; Bourgeois, J.; Guerchouche, R.; David, R.; Ondrej, J.; Drettakis, G.; Robert, P.: A feasibility study with image-based rendered virtual reality in patients with mild cognitive impairment and dementia. PLoS ONE 11(3), e0151487 (2016). https://doi.org/10.1371/journal.pone.0151487 Motes, M.A.; Yezhuvath, U.S.; Aslan, S.; Spence, J.S.; Rypma, B.; Chapman, S.B.: Higher-order cognitive training effects on processing speed-related neural activity: a randomized trial. Neurobiol. Aging. 62, 72–81 (2018). https://doi.org/10.1016/j.neurobiolaging.2017.10.003 Takeuchi, H.; Magistro, D.; Kotozaki, Y.; Motoki, K.; Nejad, K.; Nouchi, R.; Jeong, H.; Sato, C.; Sessa, S.; Nagatomi, R.; Zecca, M.; Takanishi, A.; Kawashima, R.: Effects of simultaneously performed dual-task training with aerobic exercise and working memory training on cognitive functions and neural systems in the elderly. Neural Plast. (2020). https://doi.org/10.1155/2020/3859824 Lai, L.; Bruce, H.; Bherer, L., et al.: Comparing the transfer effects of simultaneously and sequentially combined aerobic exercise and cognitive training in older adults. J. Cogn. Enhanc. 1, 478–490 (2017). https://doi.org/10.1007/s41465-017-0052-1 Raichlen, D.A.; Bharadwaj, P.K.; Nguyen, L.A., et al.: Effects of simultaneous cognitive and aerobic exercise training on dual-task walking performance in healthy older adults: results from a pilot randomized controlled trial. BMC Geriatr. (2020). https://doi.org/10.1186/s12877-020-1484-5 Gary, R.A.; Paul, S.; Corwin, E.; Butts, B.; Miller, A.H.; Hepburn, K.; Williams, B.; Waldrop-Valverde, D.: Exercise and cognitive training as a strategy to improve neurocognitive outcomes in heart failure: a pilot study. Am. J. Geriatr. Psychiatry 27(8), 809–819 (2019). https://doi.org/10.1016/j.jagp.2019.01.211 Bruce, H.; Lai, L.; Bherer, L.; Lussier, M.; St-Onge, N.; Li, K.Z.H.: The effect of simultaneously and sequentially delivered cognitive and aerobic training on mobility among older adults with hearing loss. Gait Posture. 67, 262–268 (2019). https://doi.org/10.1016/j.gaitpost.2018.10.020 Strobach, T.; Huestegge, L.: Evaluating the effectiveness of commercial brain game training with working-memory tasks. J. Cogn. Enhanc. 1, 539–558 (2017). https://doi.org/10.1007/s41465-017-0053-0 Hynes, S.M.: Internet, home-based cognitive and strategy training with older adults: a study to assess gains to daily life. Aging Clin. Exp. Res. 28, 1003–1008 (2016). https://doi.org/10.1007/s40520-015-0496-z Goghari, V.M.; Lawlor-Savage, L.: Comparison of cognitive change after working memory training and logic and planning training in healthy older adults. Front. Aging Neurosci. 9, 39 (2017). https://doi.org/10.3389/fnagi.2017.00039 Biel, D.; Steiger, T.K.; Volkmann, T.; Jochems, N.; Bunzeck, N.: The gains of a 4-week cognitive training are not modulated by novelty. Hum. Brain Map. 41, 2596–2610 (2020). https://doi.org/10.1002/hbm.24965 Minear, M.; Brasher, F.; Guerrero, C.B., et al.: A simultaneous examination of two forms of working memory training: evidence for near transfer only. Mem. Cogn. 44, 1014–1037 (2016). https://doi.org/10.3758/s13421-016-0616-9 Wayne, R.V.; Hamilton, C.; Jones Huyck, J.; Johnsrude, I.S.: Working memory training and speech in noise comprehension in older adults. Front. Aging Neurosci. 8, 49 (2016). https://doi.org/10.3389/fnagi.2016.00049 Liberta, T.A.; Kagiwada, M.; Ho, K.; Spat-Lemus, J.; Voelbel, G.T.; Kohn, A.; Perrine, K.; Josephs, L.; McLean, E.; Sacks-Zimmerman, A.: An investigation of Cogmed working memory training for neurological surgery patients. Interdiscip. Neurosurg. (2020). https://doi.org/10.1016/j.inat.2020.100786 Maier, M.; Ballester, B.R.; Leiva Bañuelos, N.; Duarte Oller, E.; Verschure, P.: Adaptive conjunctive cognitive training (ACCT) in virtual reality for chronic stroke patients: a randomized controlled pilot trial. J. Neuroeng. Rehabil. 17(1), 42 (2020). https://doi.org/10.1186/s12984-020-0652-3 Nouchi, R.; Saito, T.; Nouchi, H.; Kawashima, R.: Small acute benefits of 4 weeks processing speed training games on processing speed and inhibition performance and depressive mood in the healthy elderly people: evidence from a randomized control trial. Front. Aging Neurosci. 8, 302 (2016). https://doi.org/10.3389/fnagi.2016.00302 Baltaduonienė, D.; Kubilius, R.; Berškienė, K.; Vitkus, L.; Petruseviciene, D.: Change of cognitive functions after stroke with rehabilitation systems. Transl. Neurosci. 10, 118–124 (2019). https://doi.org/10.1515/tnsci-2019-0020 Withiel, T.D.; Wong, D.; Ponsford, J.L.; Cadilhac, D.A.; New, P.; Mihaljcic, T.; Stolwyk, R.J.: Comparing memory group training and computerized cognitive training for improving memory function following stroke: a phase II randomized controlled trial. J. Rehabil. 51(5), 343–351 (2019). https://doi.org/10.2340/16501977-2540 Jiang, C.; Yang, S.; Tao, J.; Huang, J.; Li, Y.; Ye, H.; Chen, S.; Hong, W.; Chen, L.: Clinical efficacy of acupuncture treatment in combination with rehacom cognitive training for improving cognitive function in stroke: a 2 × 2 factorial design randomized controlled trial. J. Am. Med. Direct. Assoc. 17(12), 1114–1122 (2016). https://doi.org/10.1016/j.jamda.2016.07.021 Dundon, N.M.; Dockree, S.P.; Buckley, V.; Merriman, N.; Carton, M.; Clarke, S.; Roche, R.A.; Lalor, E.C.; Robertso, I.H.; Dockree, P.M.: Impaired auditory selective attention ameliorated by cognitive training with graded exposure to noise in patients with traumatic brain injury. Neuropsychologia 75, 74–87 (2015). https://doi.org/10.1016/j.neuropsychologia.2015.05.012 Prokopenko, S.; Bezdenezhnih, A.F.; Mozheyko, E.; Petrova, M.M.: A comparative clinical study of the effectiveness of computer cognitive training in patients with post-stroke cognitive impairments without dementia. Psychol. Russia: State of Art. 11, 55–67 (2018). https://doi.org/10.11621/pir.2018.0205 Weng, W.; Liang, J.; Xue, J.; Zhu, T.; Jiang, Y.; Wang, J.; Chen, S.: The transfer effects of cognitive training on working memory among chinese older adults with mild cognitive impairment: a randomized controlled trial. Front. Aging Neurosci. (2019). https://doi.org/10.3389/fnagi.2019.00212 Lee, G.J.; Bang, H.J.; Lee, K.M.; Kong, H.H.; Seo, H.S.; Oh, M.; Bang, M.: A comparison of the effects between 2 computerized cognitive training programs, Bettercog and COMCOG, on elderly patients with MCI and mild dementia: a single-blind randomized controlled study. Medicine 97(45), e13007 (2018). https://doi.org/10.1097/MD.0000000000013007 Rolandi, E.; Dodich, A.; Galluzzi, S., et al.: Randomized controlled trial on the efficacy of a multilevel non-pharmacologic intervention in older adults with subjective memory decline: design and baseline findings of the E.Mu.N.I. study. Aging Clin. Exp. Res. 32, 817–826 (2020). https://doi.org/10.1007/s40520-019-01403-3 Cavallo, M.; Hunter, E.M.; van der Hiele, K.; Angilletta, C.: Computerized structured cognitive training in patients affected by early-stage alzheimer’s disease is feasible and effective: a randomized controlled study. Arch. Clin. Neuropsychol. 31(8), 868–876 (2016). https://doi.org/10.1093/arclin/acw072 Alloni, A.; Quaglini, S.; Panzarasa, S.; Sinforiani, E.; Bernini, S.: Evaluation of an ontology-based system for computerized cognitive rehabilitation. Int. J. Med. Inform. 115, 64–72 (2018). https://doi.org/10.1016/j.ijmedinf.2018.04.005 Clausen, A.N.; Thelen, J.; Francisco, A.J.; Bruce, J.; Martin, L.; McDowd, J.; Aupperle, R.L.: Computer-based executive function training for combat veterans with PTSD: a pilot clinical trial assessing feasibility and predictors of dropout. Front. Psychiatry. (2019). https://doi.org/10.3389/fpsyt.2019.00062