Subgraph isomorphism, log-bounded fragmentation, and graphs of (locally) bounded treewidth

Journal of Computer and System Sciences - Tập 73 - Trang 755-768 - 2007
MohammadTaghi Hajiaghayi1, Naomi Nishimura2
1Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA
2School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada

Tài liệu tham khảo

Arnborg, 1991, Easy problems for tree-decomposable graphs, J. Algorithms, 12, 308, 10.1016/0196-6774(91)90006-K Arnborg, 1986, Characterization and recognition of partial 3-trees, SIAM J. Algebraic Discrete Methods, 7, 305, 10.1137/0607033 Arnborg, 1989, Linear time algorithms for NP-hard problems restricted to partial k-trees, Discrete Appl. Math., 23, 11, 10.1016/0166-218X(89)90031-0 Baker, 1994, Approximation algorithms for NP-complete problems on planar graphs, J. Assoc. Comput. Mach., 41, 153, 10.1145/174644.174650 Bern, 1987, Linear time computation of optimal subgraphs of decomposable graphs, J. Algorithms, 8, 216, 10.1016/0196-6774(87)90039-3 Bodlaender, 1996, A linear-time algorithm for finding tree-decompositions of small treewidth, SIAM J. Comput., 25, 1305, 10.1137/S0097539793251219 Hans L. Bodlaender, Treewidth: Algorithmic techniques and results, in: Proc. 22nd Internat. Symposium on Mathematical Foundations of Computer Science, 1997, pp. 29–36 Bodlaender, 1998, A partial k-arboretum of graphs with bounded treewidth, Theoret. Comput. Sci., 209, 1, 10.1016/S0304-3975(97)00228-4 Bondy, 1976 Franz J. Brandenburg, Pattern matching problems in graphs, manuscript, 2001 Demaine, 2002, Approximation algorithms for classes of graphs excluding single-crossing graphs as minors, J. Comput. System Sci., 42, 69 Dessmark, 2000, Faster algorithms for subgraph isomorphism of k-connected partial k-trees, Algorithmica, 27, 337, 10.1007/s004530010023 Dessmark, 2000, Maximum packing for k-connected partial k-trees in polynomial time, Theoret. Comput. Sci., 236, 179, 10.1016/S0304-3975(99)00208-X Eppstein, 1999, Subgraph isomorphism in planar graphs and related problems, J. Graph Algorithms Appl., 3, 10.7155/jgaa.00014 Eppstein, 2000, Diameter and treewidth in minor-closed graph families, Algorithmica, 27, 275, 10.1007/s004530010020 Frick, 2001, Deciding first-order properties of locally tree-decomposable structures, J. Assoc. Comput. Mach., 48, 1184, 10.1145/504794.504798 Garey, 1979 Garey, 1976, The planar hamiltonian circuit problem is NP-complete, SIAM J. Comput., 5, 704, 10.1137/0205049 Grohe, 2003, Local tree-width, excluded minors, and approximation algorithms, Combinatorica, 23, 613, 10.1007/s00493-003-0037-9 Gupta, 1996, The complexity of subgraph isomorphism for classes of partial k-trees, Theoret. Comput. Sci., 164, 287, 10.1016/0304-3975(96)00046-1 Arvind Gupta, Naomi Nishimura, Sequential and parallel algorithms for embedding problems on classes of partial k-trees, in: Proc. 4th Scandinavian Workshop on Algorithm Theory, 1994, pp. 172–182 Hajiaghayi Hajiaghayi, 2003, A note on the bounded fragmentation property and its applications in network reliability, European J. Combin., 24, 891, 10.1016/S0195-6698(03)00080-5 van Leeuwen, 1990, Graph algorithms, vol. A, 525 Lingas, 1989, Subgraph isomorphism for biconnected outerplanar graphs in cubic time, Theoret. Comput. Sci., 63, 295, 10.1016/0304-3975(89)90011-X Lingas, 1988, A polynomial-time algorithm for subgraph isomorphism of two-connected series-parallel graphs, 394 Matoušek, 1992, On the complexity of finding iso- and other morphisms for partial k-trees, Discrete Math., 108, 343, 10.1016/0012-365X(92)90687-B Matula, 1978, Subtree isomorphism in O(n5/2), vol. 2, 91 Robertson, 1986, Graph minors II. Algorithmic aspects of tree-width, J. Algorithms, 7, 309, 10.1016/0196-6774(86)90023-4 Sanders, 1996, On linear recognition of tree-width at most four, SIAM J. Discrete Math., 9, 101, 10.1137/S0895480193243043 Sysło, 1982, The subgraph isomorphism problem for outerplanar graphs, Theoret. Comput. Sci., 17, 91, 10.1016/0304-3975(82)90133-5