Chironomid-inferred late-glacial and early-Holocene mean July air temperatures for Kråkenes Lake, western Norway

Springer Science and Business Media LLC - Tập 23 - Trang 77-89 - 2000
Stepehn J. Brooks1, H.J.B. Birks2,3
1Department of Entomology, Natural History Museum, London, UK
2Botanical Institute, University of Bergen, Bergen, Norway
3University College London, London, UK

Tóm tắt

A chironomid data-set calibrated to July air temperatures, based on 44 lakes in western Norway, is used to reconstruct mean July air temperatures from late-glacial and early-Holocene fossil chironomid assemblages at Kråkenes Lake. The calibration function is based on Weighted Averaging Partial Least Squares regression and has a root mean square error of prediction (RMSEP) of 1.13 °C, a r2 of 0.69, and a maximum bias of 2.66 °C. All these statistics are based on leave-one-out cross-validation. A calibration function based on summer surface-water temperatures has a poorer performance (RMSEP = 2.22 °C, r2 = 0.30, maximum bias = 5.29 °C). The reconstructed July air temperatures at Kråkenes rise to 10.5 °C soon after deglaciation, are about 11.5 °C in the Allerød, decrease to 9.5-10 °C in the Younger Dryas, and rise rapidly within 15 yrs to 11.5 °C at the onset of the Holocene. There is a two-step rise to 13 °C or more in the early-Holocene. The likely over-estimation of Younger Dryas temperatures and under-estimation of early-Holocene temperatures probably result from the limited temperature range represented by the existing calibration set. The data set is currently being expanded to include lakes with warmer air temperatures (> 14 °C) and with colder air temperatures (< 8 °C).

Tài liệu tham khảo

Aune, B., 1993. Air temperature normals, Normal period 1961––1990. Det norske meterologiske institutt, Oslo, Report 02/93 Klima. Birks, H. H., 1994. Late-glacial vegetational ecotones and climatic patterns in western Norway. Veg. Hist. Archaeobot. 3: 107–119. Birks, H. H., 2000. Aquatic macrophyte vegetation development in Kråkenes Lake, western Norway, during the late-glacial and early-Holocene. J. Paleolim. 23: 7–19. Birks, H. H. + 23 others, 1996. The Kråkenes late-glacial palaeoenvironmental project. J. Paleolim. 15: 281–286. Birks, H. H., R. W. Battarbee & H. J. B. Birks, 2000. The development of the aquatic ecosystem at Kråkenes Lake, western Norway, during the late-glacial and early-Holocene — a synthesis. J. Paleolim. 23: 91–114. Birks, H. H., Aa. Paus, J. I. Svendsen, T. Alm, J. Mangerud & J. Y. Landvik, 1994. Late Weichselian environmental change in Norway, including Svalbard. J. Quat. Sci. 9: 133–145. Birks, H. H. & H. E. Wright, 2000. Introduction to the reconstruction of the late-glacial and early-Holocene aquatic ecosystems at Kråkenes Lake, Norway. J. Paleolim. 23: 1–5. Birks, H. J. B., 1995. Quantitative palaeoenvironmental reconstructions. In D. Maddy & J. S. Brew (eds), Statistical modelling of quaternary science data. Technical Guide 5, Quaternary Research Association, Cambridge: 161–254. Birks, H. J. B., 1998. Numerical tools in quantitative palaeolimnology — progress, potentialities, and problems. J. Paleolim. 20: 307–332. Bradshaw, E., V. J. Jones, H. J. B. Birks & H. H. Birks, 2000. Diatom responses to late-glacial and early-Holocene environmental changes at Kråkenes, western Norway. J. Paleolim. 23: 21–34. Brooks, S. J., 1997. The response of Chironomidae (Insecta: Diptera) assemblages to Late-glacial climatic change in Kråkenes Lake, western Norway. Quat. Proc. 5: 49–58. Brooks, S. J., F. E. Mayle & J. J. Lowe, 1997. Chironomid-based Late-glacial climatic reconstruction for southeast Scotland. J. Quat. Sci. 12: 161–167. Brooks, S. J., J. J. Lowe & F. E. Mayle, 1998. The Late Devensian Late-glacial palaeoenvironmental record from Whitrig bog, SE Scotland. 2. Chironomidae (Insecta: Diptera). Boreas 26: 297–308. Cleveland, W. S., 1993. Visualizing data. Hobart Press, Summit, 360 pp. Cranston, P. S., 1982. A key to the larvae of the British Orthocladiinae (Chironomidae). Freshwater Biological Association, Ambleside, 152 pp. Crawley, M. J., 1993. GLIM for Ecologists. Blackwell Scientific Publications, Oxford, 379 pp. Duigan, C. A. & H. H. Birks, 2000. The late-glacial and early-Holocene palaeoecology of cladoceran microfossil assemblages at Kråkenes, western Norway, with a quantitative reconstruction of temperature changes. J. Paleolim. 23: 67–76. Gulliksen, S., H. H. Birks, G. Possnert & J. Mangerud, 1998. A calendar age estimate of the Younger Dryas — Holocene boundary at Kråkenes, western Norway. The Holocene 8: 249–259. Hann, B. J., B. G. Warner & W. F. Warwick, 1992. Aquatic invertebrates and climate change: a comment on Walker et al. (1991). Can. J. Fish. aquat. Sci. 49: 1274–1276. Hofmann, W., 1971. Zür Taxonomie und Palä okologie subfossiler Chironomiden (Dipt.) in Seesedimenten. Ergebnisse der Limnologie 6: 1–50. Hofmann, W., 1988. The significance of chironomid analysis (Insecta: Diptera) for palaeolimnological research. Palaeogeogr. Palaeoclim. Palaeoecol. 62: 501–509. Huisman, J., H. Olff & L. F. M. Fresco, 1993. A hierarchical set of models for species response models. J. Veg. Sci. 4: 37–46. Jonsgard, B. & H. H. Birks, 1995. Late-glacial mosses and environmental reconstructions at Kråkenes, western Norway. Lindbergia 20: 64–82. Kowalyk, H. E., 1985. The larval cephalic setae in the Tanypodinae (Diptera: Chironomidae) and their importance in generic determinations. Can. Ent. 117: 67–106. Laaksonen, K., 1976. The dependence of mean air temperatures upon latitude and altitude in Fennoscandia (1921–1950). Annals. Acad. Scient. Fenn. A3, 199: 1–19. Larsen, E., F. Eide, O. Longva & J. Mangerud, 1984. Allerød–Younger Dryas climatic inferences from cirque glaciers and vegetational development in the Nordfjord area, western Norway. Arct. Alp. Res. 16: 137–160. Levesque, A. J., F. E. Mayle, I. R. Walker & L. C. Cwynar, 1993a. A previously unrecognized late-glacial cold event in eastern North America. Nature 361: 623–626. Levesque, A. J., F. E. Mayle, I. R. Walker & L. C. Cwynar, 1993b. The Amphi-Atlantic Oscillation: a proposed late-glacial climatic event. Quat. Sci Rev. 12: 629–643. Levesque, A. J., L. C. Cwynar & I. R. Walker, 1994. A multi-proxy investigation of late-glacial climate and vegetation change at Pine Ridge Pond, southwest New Brunswick, Canada. Quat. Res. 42: 316–327. Levesque, A. J., L. C. Cwynar & I. R. Walker, 1997. Exceptionally steep north-south gradients in lake temperatures during the last deglaciation. Nature 385: 423–426. Lindegaard, C., 1997. Diptera Chironomidae, non-biting midges. In A. N. Nilsson (ed.), Aquatic insects of north Europe — a taxonomic handbook. Volume 2. Apollo Books, Stenstrup: 265–294. Livingstone, D. M. & A. F. Lotter, 1998. The relationship between air and water temperatures in lakes of the Swiss Plateau: a case study with palaeolimnological implications. J. Paleolim. 19: 181–198. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, Cladocera, chironomids and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolim. 18: 395–420. Lotter, A. F., I. R. Walker & S. J. Brooks, 1999. An intercontinental comparison of chironomid palaeotemperature inference models: Europe vs. North America. Quat. Sci. Rev. 18: 717–735. Moller Pillot, H. K. M., 1984. De larven der Nederlandse Chironomidae (Diptera). Nederlandse Faunistische Mededelingen. 1A: 1–277. NASP Members, 1994. Climatic changes in areas adjacent to the North Atlantic during the last glacial-interglacial transition (14–9 Ka BP): a contribution to IGCP-253. J. Quat. Sci. 9: 185–198. Odland, A., 1996. Differences in the vertical distribution pattern of Betula pubescens in Norway and its ecological significance. Paläoklimaforschung 20: 43–59. Olander, H., H. J. B. Birks, A. Korhola & T. Blom, 1999. An expanded calibration model for inferring lake-water and air temperatures from chironomid assemblages in northern Fennoscandia. The Holocene 9: (in press). Olander, H., A. Korhola & T. Blom, 1997. Surface sediment Chironomidae (Insecta: Diptera) distributions along an ecotonal transect in subarctic Fennoscandia: developing a tool for palaeotemperature reconstructions. J. Paleolim. 18: 45–59. Renberg, I., 1991. The HON-Kajak sediment corer. J. Paleolim. 6: 167–170. Solem, J. O. & H. H. Birks, 2000. Late-glacial and early-Holocene Trichoptera (Insecta) from Kråkenes Lake, western Norway. J. Paleolim. 23: 49–56. ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for direct gradient analysis. Ecology 67: 1167–1179. ter Braak, C. J. F. & S. Juggins, 1993. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269/270: 485–502. ter Braak, C. J. F. & C. W. N. Looman, 1986. Weighted averaging, logistic regression and the Gaussian response model. Vegetatio 65: 3–11. van Dinter, M. & H. H. Birks, 1996. Distinguishing fossil Betula nana and B. pubescens using their wingless fruits: implications for the late-glacial vegetational history of western Norway. Veg. Hist. Archaeobot. 5: 229–240. Walker, I. R., 1987. Chironomidae (Diptera) in paleoecology. Quat. Sci. Rev. 6: 29–40. Walker, I. R., 1995. Chironomids as indicators of past environmental change. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae. The Biology and Ecology of Non-biting Midges. Chapman & Hall, London: 405–422. Walker, I. R., A. J. Levesque, L. C. Cwynar & A. F. Lotter, 1997. An expanded surface-water palaeotemperature inference model for use with fossil midges from eastern Canada. J. Paleolim. 18: 165–178. Walker, I. R., J. P. Smol, D. R. Engstrom & H. J. B. Birks, 1991. An assessment of Chironomidae as quantitative indicators of past climatic change. Can. J. Fish. aquat. Sci. 48: 975–987. Wiederholm, T. (ed.), 1983. Chironomidae of the Holarctic region. Keys and diagnoses. Part 1. Larvae. Entomologica Scand. Suppl. 19: 1–457. Wilson, S. E., I. R. Walker, R. J. Mott & J. P. Smol, 1993. Climatic and limnological changes associated with the Younger Dryas in Atlantic Canada. Climate Dynamics 8: 177–187.