The relationship between the violet pigment PP-V production and intracellular ammonium level in Penicillium purpurogenum

AMB Express - Tập 6 - Trang 1-7 - 2016
Ryo Kojima1, Teppei Arai2, Hiroshi Matsufuji3,1, Takafumi Kasumi2,1, Taisuke Watanabe2,1, Jun Ogihara2,1
1Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Japan
2Depertment of Chemistry and Life Science, Nihon University, Fujisawa, Japan
3Depertment of Food Bioscience and Biotechnology, College of Bioresource Sciences, Nihon University, Fujisawa, Japan

Tóm tắt

Penicillium purpurogenum is the fungus that produces an azaphilone pigment. However, details about the pigment biosynthesis pathway are unknown. The violet pigment PP-V is the one of the main pigments biosynthesized by this fungus. This pigment contains an amino group in a pyran ring as its core structure. We focused on this pigment and examined the relationship between intracellular ammonium concentration and pigment production using glutamine as a nitrogen source. The intracellular ammonium level decreased about 1.5-fold in conditions favoring PP-V production. Moreover, P. purpurogenum was transferred to medium in which it commonly produces the related pigment PP-O after cultivating it in the presence or absence of glutamine to investigate whether this fungus biosynthesizes PP-V using surplus ammonium in cells. Only mycelia cultured in medium containing 10 mM glutamine produced the violet pigment, and simultaneously intracellular ammonium levels decreased under this condition. From comparisons of the amount of PP-V that was secreted with quantity of surplus intracellular ammonium, it is suggested that P. purpurogenum maintains ammonium homeostasis by excreting waste ammonium as PP-V.

Tài liệu tham khảo

Akihisa T, Tokuda H, Yasukawa K, Ukiya M, Kiyota A, Sakamoto N, Suzuki T, Tanabe N, Nishino H. Azaphilones, furanoisophthalides, and amino acids from the extracts of Monascus pilosus-fermented rice (Red-mold rice) and their chemopreventive effects. J Agric Food Chem. 2005;53:562–5. Arai T, Koganei K, Umemura S, Kojima R, Kato J, Kasumi T, Ogihara J. Importance of the ammonia assimilation by Penicillium purpurogenum in amino derivative Monascus pigment, PP-V, production. AMB Express. 2013. doi:10.1186/2191-0855-3-19. Britto DT, Kronzucker HJ. NH4+ toxicity in higher plants: a critical review. J Plant Physiol. 2002;159:567–84. doi:10.1078/0176-1617-0774. Dufossé L, Fouillaud M, Caro Y, Mapari SA, Sutthiwong N. Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotechnol. 2014;26:56–61. doi:10.1016/j.copbio.2013.09.007. Hess DC, Lu W, Rabinowitz JD, Botstein D. Ammonium toxicity and potassium limitation in yeast. PLoS Biol. 2006;4:e351. doi:10.1371/journal.pbio.0040351. Kim C, Jung H, Kim YO, Shin CS. Antimicrobial activities of amino acid derivatives of monascus pigments. FEMS Microbiol Lett. 2006;264:117–24. Mapari SA, Thrane U, Meyer AS. Fungal polyketide azaphilone pigments as future natural food colorants? Trends Biotechnol. 2010;28:300–7. doi:10.1016/j.tibtech.2010.03.004. Manzoni M, Rollini M. Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl Microbiol Biotechnol. 2002;58:555–64. McDermott WV Jr. Metabolism and toxicity of ammonia. N Engl J Med. 1957;257:1076–81. doi:10.1056/NEJM195711282572205. Ogihara J, Kato J, Oishi K, Fujimoto Y. Biosynthesis of PP-V, a monascorubramine homologue, by Penicillium sp. AZ. J Biosci Bioeng. 2000a;90:678–80. Ogihara J, Kato J, Oishi K, Fujimoto Y, Eguchi T. Production and structural analysis of PP-V, a homologue of monascorubramine, produced by anew isolate of Penicillium sp. J Biosci Bioeng. 2000b;90:549–54. Ogihara J, Kato J, Oishi K, Fujimoto Y. PP-R, 7-(2-hydroxyethyl)-monascorubramine, a red pigment prouced in the mycelia of Penicillium sp. AZ. J Biosci Bioen. 2001;91:44–7. Ogihara J, Oishi K. Effect of ammonium nitrate on the Production of PP-V and monascorubrin homologues by Penicillium sp. AZ. J Biosci Bioeng. 2002;93:54–9. Park SR, Han AR, Ban YH, Yoo YJ, Kim EJ, Yoon YJ. Genetic engineering of macrolide biosynthesis: past advances, current state, and future prospects. Appl Microbiol Biotechnol. 2010;85:1227–39. doi:10.1007/s00253-009-2326-8. Schmidt-Heydt M, Graf E, Stoll D, Geisen R. The biosynthesis of ochratoxin A by Penicillium as one mechanism for adaptation to NaCl rich foods. Food Microbiol. 2012;29:233–41. doi:10.1016/j.fm.2011.08.003. Schmidt-Heydt M, Stoll D, Schütz P, Geisen R. Oxidative stress induces the biosynthesis of citrinin by Penicillium verrucosum at the expense of ochratoxin. Int J Food Microbiol. 2015;192:1–6. doi:10.1016/j.ijfoodmicro.2014.09.008. Tam EW, Tsang CC, Lau SK, Woo PC. Polyketides, toxins and pigments in Penicillium marneffei. Toxins (Basel). 2015;30:4421–36. doi:10.3390/toxins7114421. Wang YZ, Ju XL, Zhou YG. The variability of citrinin production in Monascus type cultures. Food Microbiol. 2005;22:145–8. doi:10.1016/j.fm.2004.01.006. Winkler R, Hertweck C. Biosynthesis of nitro compounds. Chembiochem. 2007;8:973–7. Zheng Y, Xin Y, Shi X, Guo Y. Anti-cancer effect of rubropunctatin against human gastric carcinoma cells BGC-823. Appl Microbiol Biotechnol. 2010;88:1169–77. doi:10.1007/s00253-010-2834-6.