Reduced Chaos decomposition with random coefficients of vector-valued random variables and random fields
Tài liệu tham khảo
Aarnst, 2008, Probabilistic equivalence and stochastic model reduction in multiscale analysis, Comput. Methods Appl. Mech. Engrg., 197, 3584, 10.1016/j.cma.2008.03.016
Asokan, 2005, Variational multiscale stabilized FEM formulations for transport equations: stochastic advection–diffusion and incompressible stochastic Navier–Stokes equations, J. Comput. Phys., 202, 94, 10.1016/j.jcp.2004.06.019
Babuska, 2004, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42, 800, 10.1137/S0036142902418680
Das, 2008, Asymptotic sampling distribution for polynomial Chaos representation of data: a maximum-entropy and Fisher information approach, SIAM J. Sci. Comput., 30, 2207, 10.1137/060652105
Sonjoy Das, Roger Ghanem, Hybrid representations for complex dynamical stochastic systems: coupled non-parametric and parametric models, in: C. Soize, G.I. Schuller (Eds.), Proceedings of the Sixth International Conference on Structural Dynamics, Paris, France, 4–7 September 2005, pp. v.1, 53–60.
Descelliers, 2006, Maximum likelihood estimation of stochastic Chaos representation from experimental data, Int. J. Numer. Methods Engrg., 66, 978, 10.1002/nme.1576
Frauenfelder, 2005, Finite elements for elliptic problems with stochastic coefficients, Comput. Methods Appl. Mech. Engrg., 194, 205, 10.1016/j.cma.2004.04.008
Ghanem, 1999, Ingredients for a general purpose stochastic finite elements formulation, Comput. Methods Appl. Mech. Engrg., 168, 19, 10.1016/S0045-7825(98)00106-6
Ghanem, 2008, A probabilistic construction of model validation, Comput. Methods Appl. Mech. Engrg., 197, 2585, 10.1016/j.cma.2007.08.029
Ghanem, 2006, Characterization of stochastic system parameters from experimental data: a Bayesian inference approach, J. Comput. Phys., 217, 63, 10.1016/j.jcp.2006.01.037
Ghanem, 1991
Huebner, 1995, On asymptotic properties of maximum likelihood estimators for parabolic stochastic pdes, Probab. Theory Related Fields, 103, 143, 10.1007/BF01204212
Le Maitre, 2004, Multi-resolution analysis of Wiener-type uncertainty propagation schemes, J. Comput. Phys., 197, 502, 10.1016/j.jcp.2003.12.020
Le Maitre, 2004, Uncertainty propagation using Wiener–Haar expansions, J. Comput. Phys., 197, 28, 10.1016/j.jcp.2003.11.033
Matthies, 2005, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Engrg., 194, 1295, 10.1016/j.cma.2004.05.027
Najm, 2009, Uncertainty quantification and polynomial Chaos techniques in computational fluid dynamics, Ann. Rev. Fluid Mech., 41, 10.1146/annurev.fluid.010908.165248
Red-Horse, 2004, A probabilistic approach to uncertainty quantification with limited information, Reliab. Engrg. Syst. Safety, 85, 183, 10.1016/j.ress.2004.03.011
Slud, 1993, The moment problem for polynomials forms in normal random variables, Ann. Probab., 21, 2200, 10.1214/aop/1176989017
Soize, 2003, Random matrix theory and non-parametric model of random uncertainties in vibration analysis, J. Sound Vib., 263, 893, 10.1016/S0022-460X(02)01170-7
Soize, 2005, Random matrix theory for modeling uncertainties in computational mechanics, Comput. Methods Appl. Mech. Engrg., 194, 1333, 10.1016/j.cma.2004.06.038
Soize, 2004, Physical systems with random uncertainties: Chaos representations with arbitrary probability measure, SIAM J. Sci. Comput., 26, 395, 10.1137/S1064827503424505
Wan, 2006, Multi-element generalized polynomial Chaos for arbitrary probability measures, SIAM J. Sci. Comput., 28, 901, 10.1137/050627630
Xiu, 2003, Modeling uncertainty in flow simulations via generalized polynomial Chaos, J. Comput. Phys., 187, 137, 10.1016/S0021-9991(03)00092-5