Reduced Chaos decomposition with random coefficients of vector-valued random variables and random fields

Computer Methods in Applied Mechanics and Engineering - Tập 198 - Trang 1926-1934 - 2009
Christian Soize1, Roger G. Ghanem2
1Université Paris-Est, Laboratoire de Modélisation et Simulation Multi-Échelle, MSME FRE3160 CNRS, 5 bd Descartes, Champs-sur-Marne, 77454 Marne-la-Vallée, Cedex 2, France
2Department of Aerospace and Mechanics, 210 KAP Hall, University of Southern California, Los Angeles, CA 90089, United States

Tài liệu tham khảo

Aarnst, 2008, Probabilistic equivalence and stochastic model reduction in multiscale analysis, Comput. Methods Appl. Mech. Engrg., 197, 3584, 10.1016/j.cma.2008.03.016 Asokan, 2005, Variational multiscale stabilized FEM formulations for transport equations: stochastic advection–diffusion and incompressible stochastic Navier–Stokes equations, J. Comput. Phys., 202, 94, 10.1016/j.jcp.2004.06.019 Babuska, 2004, Galerkin finite element approximations of stochastic elliptic partial differential equations, SIAM J. Numer. Anal., 42, 800, 10.1137/S0036142902418680 Das, 2008, Asymptotic sampling distribution for polynomial Chaos representation of data: a maximum-entropy and Fisher information approach, SIAM J. Sci. Comput., 30, 2207, 10.1137/060652105 Sonjoy Das, Roger Ghanem, Hybrid representations for complex dynamical stochastic systems: coupled non-parametric and parametric models, in: C. Soize, G.I. Schuller (Eds.), Proceedings of the Sixth International Conference on Structural Dynamics, Paris, France, 4–7 September 2005, pp. v.1, 53–60. Descelliers, 2006, Maximum likelihood estimation of stochastic Chaos representation from experimental data, Int. J. Numer. Methods Engrg., 66, 978, 10.1002/nme.1576 Frauenfelder, 2005, Finite elements for elliptic problems with stochastic coefficients, Comput. Methods Appl. Mech. Engrg., 194, 205, 10.1016/j.cma.2004.04.008 Ghanem, 1999, Ingredients for a general purpose stochastic finite elements formulation, Comput. Methods Appl. Mech. Engrg., 168, 19, 10.1016/S0045-7825(98)00106-6 Ghanem, 2008, A probabilistic construction of model validation, Comput. Methods Appl. Mech. Engrg., 197, 2585, 10.1016/j.cma.2007.08.029 Ghanem, 2006, Characterization of stochastic system parameters from experimental data: a Bayesian inference approach, J. Comput. Phys., 217, 63, 10.1016/j.jcp.2006.01.037 Ghanem, 1991 Huebner, 1995, On asymptotic properties of maximum likelihood estimators for parabolic stochastic pdes, Probab. Theory Related Fields, 103, 143, 10.1007/BF01204212 Le Maitre, 2004, Multi-resolution analysis of Wiener-type uncertainty propagation schemes, J. Comput. Phys., 197, 502, 10.1016/j.jcp.2003.12.020 Le Maitre, 2004, Uncertainty propagation using Wiener–Haar expansions, J. Comput. Phys., 197, 28, 10.1016/j.jcp.2003.11.033 Matthies, 2005, Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations, Comput. Methods Appl. Mech. Engrg., 194, 1295, 10.1016/j.cma.2004.05.027 Najm, 2009, Uncertainty quantification and polynomial Chaos techniques in computational fluid dynamics, Ann. Rev. Fluid Mech., 41, 10.1146/annurev.fluid.010908.165248 Red-Horse, 2004, A probabilistic approach to uncertainty quantification with limited information, Reliab. Engrg. Syst. Safety, 85, 183, 10.1016/j.ress.2004.03.011 Slud, 1993, The moment problem for polynomials forms in normal random variables, Ann. Probab., 21, 2200, 10.1214/aop/1176989017 Soize, 2003, Random matrix theory and non-parametric model of random uncertainties in vibration analysis, J. Sound Vib., 263, 893, 10.1016/S0022-460X(02)01170-7 Soize, 2005, Random matrix theory for modeling uncertainties in computational mechanics, Comput. Methods Appl. Mech. Engrg., 194, 1333, 10.1016/j.cma.2004.06.038 Soize, 2004, Physical systems with random uncertainties: Chaos representations with arbitrary probability measure, SIAM J. Sci. Comput., 26, 395, 10.1137/S1064827503424505 Wan, 2006, Multi-element generalized polynomial Chaos for arbitrary probability measures, SIAM J. Sci. Comput., 28, 901, 10.1137/050627630 Xiu, 2003, Modeling uncertainty in flow simulations via generalized polynomial Chaos, J. Comput. Phys., 187, 137, 10.1016/S0021-9991(03)00092-5