Scattering Systems with Several Evolutions and Formal Reproducing Kernel Hilbert Spaces

Joseph A. Ball1, Dmitry S. Kaliuzhnyi-Verbovetskyi2, Cora Sadosky, Victor Vinnikov3
1Department of Mathematics, Virginia Tech, Blacksburg, USA
2Department of Mathematics, Drexel University, Philadelphia, USA
3Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Tóm tắt

A Schur-class function in $$d$$ variables is defined to be an analytic contractive-operator valued function on the unit polydisk. Such a function is said to be in the Schur–Agler class if it is contractive when evaluated on any commutative $$d$$ -tuple of strict contractions on a Hilbert space. It is known that the Schur–Agler class is a strictly proper subclass of the Schur class if the number of variables $$d$$ is more than two. The Schur–Agler class is also characterized as those functions arising as the transfer function of a certain type (Givone–Roesser) of conservative multidimensional linear system. Previous work of the authors identified the Schur–Agler class as those Schur-class functions which arise as the scattering matrix for a certain type of (not necessarily minimal) Lax–Phillips multievolution scattering system having some additional geometric structure. The present paper links this additional geometric scattering structure directly with a known reproducing-kernel characterization of the Schur–Agler class. We use extensively the technique of formal reproducing kernel Hilbert spaces that was previously introduced by the authors and that allows us to manipulate formal power series in several commuting variables and their inverses (e.g., Fourier series of elements of $$L^2$$ on a torus) in the same way as one manipulates analytic functions in the usual setting of reproducing kernel Hilbert spaces.

Từ khóa


Tài liệu tham khảo

Adamjan, V.M., Arov, D.Z.: On unitary coupling of semiunitary operators, (russian), Mat. Issled. 1 (1966), vyp. 2, 3–64. English translation: Am. Math. Soc. Transl. (2) 95, 75–129 (1970) Agler, J.: On the representation of certain holomorphic functions defined on a polydisc. In: de Branges, L., Gohberg, I., Rovnyak, J. (eds.) Topics in Operator Theory: Ernst D. Hellinger Memorial Volume, pp. 47–66 OT48. Birkhäuser, Basel (1990) Agler, J., McCarthy, J.E.: Nevanlinna-Pick interpolation on the bidisk. J. Reine Angew. Math. 506, 191–204 (1999) Alpay, D., Dijksma, A., Rovnyak, J.: A theorem of Beurling-Lax type for Hilbert spaces of functions analytic in the unit ball. Integ Equ Oper Theory 47, 251–274 (2003) Anderson, B.D.O., Vongpanitlerd, S.: Network Analysis and Synthesis: A Modern Systems Theory Approach. Prentice-Hall, Englewood Cliffs (1973) Ball, J.A.: Factorization and model theory for contraction operators with unitary part. In: Memoirs of the American Mathematical Society No. 198. Amer. Math. Soc., Providence (1978) Ball, J.A.: Linear systems, operator model theory and scattering: multivariable generalizations. In: Ramm, A.G., Shivakumar, P.N., Strauss, A.V. (eds.) Operator Theory an its Applications, pp. 179–185, FIC25. Amer. Math. Soc., Providence (2000) Ball, J.A., Bolotnikov, V.: Nevanlinna-pick interpolation for schur-agler-class functions on domains with matrix polynomial defining function in \({\mathbb{C}}^{n}\). N Y J. Math. 11, 1–44 (2005) Ball, J.A., Bolotnikov, V.: Canonical transfer-function realization for Schur–Agler-class functions of the polydisk. In: Dym, H., Kaashoek, M.A., Lancaster, P., Langer, H., Lerer, L. (eds.) A Panorama of Modern Operator Theory and Related Topics: The Israel Gohberg Memorial Volume, pp. 75–122, OT 218. Birkhäuser, Basel (2012) Ball, J.A., Bolotnikov, V., Fang, Q.: Transfer-function realization for multipliers of the Arveson space. J. Math. Anal. Appl. 333, 68–92 (2007) Ball, J.A., Bolotnikov, V., Fang, Q.: Schur-class multipliers on the Fock space: de Branges-Rovnyak reproducing kernel spaces and transfer-function realizations. In: Bakonyi, M., Gheondea, A., Putinar, M., Rovnyak, J. (eds.) Operator Theory, Structured Matrices, and Dilations: Tiberiu Constantinescu Memorial Volume, pp. 101–130. Theta Press (2007) Ball, J.A., Cohen, N.: de Branges–Rovnyak operator models and systems theory: a survey. In: Bart, H., Gohberg, I., Kaashoek, M.A. (eds.) Topics in Matrix and Operator Theory, pp. 93–136, OT50. Birkhäuser, Boston (1991) Ball, J.A., Sadosky, C., Vinnikov, V.: Conservative input-state-output systems with evolution on a multidimensional integer lattice. Multidimens. Syst. Signal Process. 16, 133–198 (2005) Ball, J.A., Sadosky, C., Vinnikov, V.: Scattering systems with several evolutions and multidimensional input/state/output systems. Integral Equ. Oper. Theory 52, 323–393 (2005) Ball, J.A., Sadosky, C., Vinnikov, V.: Conservative linear systems, unitary colligations and Lax-Phillips scattering: multidimensional generalizations. Int. J. Control 77(9), 802–811 (2004) Ball, J.A., Trent, T.T.: Unitary colligations, reproducing kernel Hilbert spaces, and Nevanlinna-Pick interpolation in several variables. J. Funct. Anal. 157, 1–61 (1998) Ball, J.A., Vinnikov, V.: Formal reproducing kernel Hilbert spaces: the commutative and noncommutative settings. In: Alpay, D. (ed.) Reproducing Kernel Spaces and Applications, pp. 77–134, OT143. Birkhäuser, Basel (2003) Ball, J.A., Vinnikov, V.: Functional models for representations of the Cuntz algebra. In: Alpay, D., Vinnikov, V. (eds.) Operator Theory, System Theory and Scattering Theory: Multidimensional Generalizations. OT157, pp. 1–60. Birkhäuser, Basel (2005) de Branges, L., Rovnyak, J.: Square Summable Power Series. Holt, Rinehart and Winston, New York (1966) de Branges, L., Rovnyak, J.: Canonical models in quantum scattering theory. In: Perturbation Theory and its Applications in Quantum Mechanics (Proc. Adv. Sem. Math. Res. Center, U.S. Army, Theoret. Chem. Inst., Univ. of Wisconsin, Madison, Wis., 1965), pp. 295–392 (1966) Brodskiĭ, M.S., Livšic, M.S.: Spectral analysis of non-self-adjoint operators and intermediate systems. Uspehi Mat. Nauk (N.S.) 13 1(79), 3–85 (1958), MR 20:7221. In Russian, English translation in Amer. Math. Soc. Transl. (2) 13, 265–346 (1960) Conway, J.B.: A course in functional analysis, 2nd edn. In: Graduate Texts in Mathematics, vol. 96. Springer, New York (1990) Cotlar, M., Sadosky, C.: Generalized Bochner Theorem in algebraic scattering systems. In: Analysis at Urbana, Vol. II, pp. 144–169. London Math. Soc. Lecture Notes Ser. 138. Cambridge Univ. Press, Cambridge (1989) Cotlar, M., Sadosky, C.: Integral representations of bounded Hankel forms defined in scattering systems with a multidimensional evolution group. In: Gohberg, I., Helton, J.W., Rodman, L. (eds.) Contributions to Operator Theory and its Applications (Mesa, AZ, 1987), pp. 357–375, OT35. Birkhäuser, Basel (1988) Dixmier, J.: les algèbres d’operérateurs dans l’espace Hilbertien (Algebres de von Neumann), cahiers scientifiques Fascicule XXV, Gauthier-Vallars Paris (1969); English translation: Von Neumann Algebras, North-Holland Mathematical Library, vol. 27, North-Holland, Amsterdam (1981) Geronimo, J.S., Woerdeman, H.J.: Positive extensions, Fejér–Riesz factorization and autoregressive filters in two variables. Ann. Math. (2) 160(3), 839–906 (2004) Givone, D.D., Roesser, R.P.: Multidimensional linear iterative circuits-general properties. IEEE Trans. Comp. C–21(10), 1067–1073 (1972) Givone, D.D., Roesser, R.P.: Minimization of multidimensional linear iterative circuits. IEEE Trans. Comp. C–22(7), 673–678 (1973) Grinshpan, A., Kaliuzhnyi-Verbovetskyi, D.S., Vinnikov, V., Woerdeman, H.J.: Classes of tuples of commuting contractions satisfying the multivariable von Neumann inequality. J. Funct. Anal. 256(9), 3035–3054 (2009) Helton, J.W.: Discrete time systems, operator models, and scattering theory. J. Funct. Anal. 16, 15–38 (1974) Hille, E., Phillips, R.S.: Functional Analysis and Semi-Groups (Revised Edition). In: Collloquium Publication, vol. 31. Am. Math. Soc, Providence (1957) Iwasaki, T., Skelton, R.E.: All controllers for the general \({\cal H}_\infty \) control problem: lmi existence conditions and state space formulas. Automatica 30(8), 1307–1317 (1994) Kalyuzhniy, D.S.: Multiparametric dissipative linear stationary dynamical scattering systems: discrete case. J. Oper. Theory 43, 427–460 (2000) Kung, S.-Y., Lévy, B.C., Morf, M., Kailath, T.: New results in 2-d systems theory, part ii: 2-d state-space models—realization and the notions of controllability, observability, and minimality. Proc. IEEE 65(6), 945–961 (1977) Knese, G.: Bernstein-Szegő measures on the two-dimensional torus. Indiana Univ. Math. J. 57(3), 1353–1376 (2008) Knese, G.: Rational inner functions in the schur-agler class of the polydisk. Publ. Mat. 55(2), 343–357 (2011) Knese, G.: Kernel decompositions for Schur functions on the polydisk. Complex Anal. Oper. Theory 5(4), 1093–1111 (2011) Kummert, A.: Synthesis of two-dimensional lossless \(m\)-ports with prescribed scattering matrix. Circ. Syst. Signal Process. 8(1), 97–119 (1989) Lax, P.D., Phillips, R.S.: Scattering Theory. Pure and Applied Math. vol. 26. Academic Press, Boston (1989). (second revised edition, first edition published in 1967) Livšic, M.S.: On a class of linear operators in Hilbert space, Rec. Math. [Mat. Sbornik] N.S. 19:61 (1946), 239–262, MR 8:588d. In Russian, English translation in Amer. Math. Soc. Transl. (2) 13, 61–83 (1960) Livšic, M.S.: The application of non-self-adjoint operators to scattering theory, Zh. Eksper. Teoret. Fiz. 31, 121–131 (1956). MR 19:221d. In Russian, English translation in Soviet Phys. JETP 4, 91–98 (1957) Livšic, M.S., Flekser, M.Š.: Expansion of a reactive four-terminal network into a chain of simplest four-terminal networks. Doklady Akad. Nauk Sssr (n.s) 135, 542–544 (1960). mr 22:11818. In Russian, English translation in Soviet Phys. Dokl. 5, 1150–1152 (1960) Livšic, M.S.: Izdat. “Nauka”, Moscow, 1966, MR 38:1922. Translated as Operators, oscillations, waves (open systems), Transl. Math. Monographs, vol. 34. American Mathematical Society, Providence (1973). ISBN 0-8218-1584-1 Nikolskii, N.K., Vasyunin, V.I.: A unified approach to function models, and the transcription problem. In: Dym, H. et al. (eds.) The Gohberg Anniversary Collection (Calgary, AB, 1988), vol. 2, pp. 405–434, OT41. Birkhäuser-Verlag, Boston (1989) Nikolskii, N.K., Vasyunin, V.I.: Elements of spectral theory in terms of the free function model Part I: Basic constructions. In: Axler, S., McCarthy, J.E., Sarason, D. (eds.) Holomorphic Spaces, pp. 211–302. Mathematical Sciences Research Institute Publications, vol. 33. Cambridge University Press, Cambridge (1998) Rudin, W.: Functional Analysis, 2nd edn. McGraw Hill, Boston (1991) Sadosky, C.: Liftings of kernels shift-invariant in scattering systems. In: Axler, S., McCarthy, J.E., Sarason, D. (eds.) Holomorphic Spaces, pp. 303–336. Mathematical Sciences Research Institute Publications, vol. 33. Cambridge University Press, Cambridge (1998) Sarason, D.: Sub-Hardy Hilbert Spaces in the unit disk. University of Arkansas Lecture Notes in the Mathematical Sciences, vol. 10. Wiley, New York (1994) Sz.-Nagy, B., Foiaş, C., Bercovici, H., Kérchy, L.: Harmonic Analysis on Hilbert Space (Revised and Enlarged Edition). Springer, Berlin (2010) Staffans, O.J.: Well-Posed Linear Systems. In: Encyclopedia of Mathematics and Its Applications, vol. 103. Cambridge University Press, Cambridge (2005)