Preparation and characterization of ultra-lightweight foamed geopolymer (UFG) based on fly ash-metakaolin blends
Tài liệu tham khảo
Davidovits, 1991, Geopolymers: inorganic polymeric new materials, J. Therm. Anal. Calorim., 37, 1633, 10.1007/BF01912193
Jaarsveld, 1997, The potential use of geopolymeric materials to immobilise toxic metals: Part I, Theory Appl. Miner Eng., 10, 659, 10.1016/S0892-6875(97)00046-0
Provis, 2009
Othuman, 2011, Elevated-temperature thermal properties of lightweight foamed concrete, Constr. Build. Mater., 25, 705, 10.1016/j.conbuildmat.2010.07.016
Akthar, 2010, High porosity (>90%) cementitious foams, Cem. Concr. Res., 40, 352, 10.1016/j.cemconres.2009.10.012
Amran, 2015, Properties and applications of foamed concrete; a review, Constr. Build. Mater., 101, 990, 10.1016/j.conbuildmat.2015.10.112
Rutkevičius, 2015, Sound absorption of porous cement composites: effects of the porosity and the pore size, J. Mater. Sci., 50, 3495, 10.1007/s10853-015-8912-5
Zhang, 2015, Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete, Cem. Concr. Compos., 62, 97, 10.1016/j.cemconcomp.2015.03.013
Rui, 2016, Porous biomass fly ash-based geopolymers with tailored thermal conductivity, J. Clean. Prod., 119, 99, 10.1016/j.jclepro.2016.01.083
Richard, 2013, Experimental production of sustainable lightweight foamed concrete, J. Appl. Sci. Tech., 3, 994, 10.9734/BJAST/2013/4242
Duxson, 2007, The role of inorganic polymer technology in the development of ‘green concrete’, Cem. Concr. Res., 37, 1590, 10.1016/j.cemconres.2007.08.018
Provis, 2014, Geopolymers and other alkali activated materials: why, how, and what?, Mater. Struct., 47, 11, 10.1617/s11527-013-0211-5
Abdollahnejad, 2001, Development of foam one-part geopolymers with enhanced thermal insulation performance and low carbon dioxide emissions, Adv. Mater. Res., 2015, 96
Alvarezayuso, 2008, Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes, J. Hazard. Mater., 154, 175, 10.1016/j.jhazmat.2007.10.008
Cheng, 2003, Fire-resistant geopolymer produced by granulated blast furnace slag, Miner. Eng., 16, 205, 10.1016/S0892-6875(03)00008-6
Abdullah, 2012, Fly ash-based geopolymer lightweight concrete using foaming agent, Int. J. Mol. Sci., 13, 7186, 10.3390/ijms13067186
Hajimohammadi, 2017, Alkali activated slag foams: the effect of the alkali reaction on foam characteristics, J. Clean. Prod., 147, 330, 10.1016/j.jclepro.2017.01.134
Masi, 2014, A comparison between different foaming methods for the synthesis of light weight geopolymers, Ceram. Int., 40, 13891, 10.1016/j.ceramint.2014.05.108
Sanjayan, 2015, Physical and mechanical properties of lightweight aerated geopolymer, Constr. Build. Mater., 79, 236, 10.1016/j.conbuildmat.2015.01.043
Hajimohammadi, 2017, Regulating the chemical foaming reaction to control the porosity of geopolymer foams, Mater. Des., 120, 255, 10.1016/j.matdes.2017.02.026
Kuzielová, 2016, Effect of activated foaming agent on the foam concrete properties, Constr. Build. Mater., 125, 998, 10.1016/j.conbuildmat.2016.08.122
Zhang, 2010, Effects of fly ash source and curing procedure on strength development of geopolymers
Ducman, 2016, Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents, Mater. Charact., 113, 207, 10.1016/j.matchar.2016.01.019
Rickard, 2011, Assessing the suitability of three Australian fly ashes as an aluminosilicate source for geopolymers in high temperature applications, Mater. Sci. Eng., 528, 3390, 10.1016/j.msea.2011.01.005
Bonakdar, 2013, Physical and mechanical characterization of Fiber-Reinforced Aerated Concrete (FRAC), Cem. Concr. Compos., 38, 82, 10.1016/j.cemconcomp.2013.03.006
Nambiar, 2007, Air-void characterisation of foam concrete, Cem. Concr. Res., 37, 221, 10.1016/j.cemconres.2006.10.009
Zhang, 2014, Geopolymer foam concrete: an emerging material for sustainable construction, Constr. Build. Mater., 56, 113, 10.1016/j.conbuildmat.2014.01.081
M.H. Veazey, Artificially colored granules and method of producing same: US, Patent 2,215,600[P]. 1940-9-24.
Ortega, 2003, Alternative gelling agents for the gelcasting of ceramic foams, J. Eur. Ceram. Soc., 23, 75, 10.1016/S0955-2219(02)00075-4
Pan, 2014, Preparation and characterization of super low density foamed concrete from Portland cement and admixtures, Constr. Build. Mater., 72, 256, 10.1016/j.conbuildmat.2014.08.078
Zhou, 2010, An environment-friendly thermal insulation material from cotton stalk fibers, Energy Build., 42, 1070, 10.1016/j.enbuild.2010.01.020
Feng, 2015, Development of porous fly ash-based geopolymer with low thermal conductivity, Mater. Des., 65, 529, 10.1016/j.matdes.2014.09.024
Khalil, 1994, Immobilization of intermediate-level wastes in geopolymers, J. Nucl. Mater., 211, 141, 10.1016/0022-3115(94)90364-6
Jaarsveld, 2002, The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers, J. Chem. Eng., 89, 63, 10.1016/S1385-8947(02)00025-6