The effect of Fe and Ni catalysts on the growth of multiwalled carbon nanotubes using chemical vapor deposition
Tóm tắt
The effect of Fe and Ni catalysts on the synthesis of carbon nanotubes (CNTs) using atmospheric pressure chemical vapor deposition (APCVD) was investigated. Field emission scanning electron microscopy (FESEM) analysis suggests that the samples grow through a tip growth mechanism. High-resolution transmission electron microscopy (HRTEM) measurements show multiwalled carbon nanotubes (MWCNTs) with bamboo structure for Ni catalyst while iron filled straight tubes were obtained with the Fe catalyst. The X-ray diffraction (XRD) pattern indicates that nanotubes are graphitic in nature and there is no trace of carbide phases in both the cases. Low frequency Raman analysis of the bamboo-like and filled CNTs confirms the presence of radial breathing modes (RBM). The degree of graphitization of CNTs synthesized from Fe catalyst is higher than that from Ni catalyst as demonstrated by the high frequency Raman analysis. Simple models for the growth of bamboo-like and tubular catalyst filled nanotubes are proposed.
Tài liệu tham khảo
Ajayan PM, Iijima S (1993) Capillarity-induced filling of carbon nanotubes. Nature 361:333–334. doi:10.1038/361333a0
Baker RTK, Barber MA, Harris PS et al (1972) Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J Catal 26:51–62. doi:10.1016/0021-9517(72)90032-2
Bartsch K, Biedermann K, Gemming T et al (2005) On the diffusion-controlled growth of multiwalled carbon nanotubes. J Appl Phys 97:114301-1–114301-7
Benoit JM, Buisson JP, Chauvet O et al (2002) Low-frequency Raman studies of multiwalled carbon nanotubes: experiments and theory. Phys Rev B: Condens Matter Mater Phys 66:073417-1–073417-4
Bertoni G, Cepek C, Romanato F et al (2004) Growth of multi-wall and single-wall carbon nanotubes with in situ high vacuum catalyst deposition. Carbon 42:440–443. doi:10.1016/j.carbon.2003.11.005
Chen P, Wu X, Lin J et al (1999) High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures. Science 285:91–93. doi:10.1126/science.285.5424.91
Dai HJ, Hafner JH, Rinzler AG et al (1996) Nanotubes as nanoprobes in scanning probe microscopy. Nature 384:147–150. doi:10.1038/384147a0
Deck CP, Vecchio K (2005) Growth mechanism of vapor phase CVD-grown multi-walled carbon nanotubes. Carbon 43:2608–2617. doi:10.1016/j.carbon.2005.05.012
Fujita J, Ishida M, Ichihashi T et al (2003) Carbon nanopillar laterally grown with electron beam-induced chemical vapor deposition. J Vac Sci Technol B 21:2990–2993. doi:10.1116/1.1624259
Holstein WL (1995) The roles of ordinary and soret diffusion in the metal-catalyzed formation of filamentous carbon. J Catal 152:42–51. doi:10.1006/jcat.1995.1058
Huang ZP, Carnahan DL, Rybczynski J et al (2003) Growth of large periodic arrays of carbon nanotubes. Appl Phys Lett 82:460–462. doi:10.1063/1.1539299
Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. doi:10.1038/354056a0
Iijima S (1993) Growth of carbon nanotubes. Mater Sci Eng B 19:172–180. doi:10.1016/0921-5107(93)90184-O
Jak MJJ, Konstapel C, van Kreuningen A et al (2000) Scanning tunnelling microscopy study of the growth of small palladium particles on TiO2 (110). Surf Sci 457:295–310. doi:10.1016/S0039-6028(00)00431-3
Jeong HJ, Jeong SY, Shin YM (2002) Dual-catalyst growth of vertically aligned carbon nanotubes at low temperature in thermal chemical vapor deposition. Chem Phys Lett 361:189–195. doi:10.1016/S0009-2614(02)00904-1
Jinno M, Bandow S, Ando Y (2004) Multiwalled carbon nanotubes produced by direct current arc discharge in hydrogen gas. Chem Phys Lett 398:256–259. doi:10.1016/j.cplett.2004.09.064
Journet C, Master WK, Bernier P et al (1997) Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388:756–758. doi:10.1038/41972
Kim H, Sigmund W (2005) Iron nanoparticles in carbon nanotubes at various temperatures. J Cryst Growth 276:594–605. doi:10.1016/j.jcrysgro.2004.11.393
Kong J, Cassell AM, Dai HJ (1998) Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem Phys Lett 292:567–574. doi:10.1016/S0009-2614(98)00745-3
Kuo CT, Lin CH, Lo AY (2003) Feasibility studies of magnetic particle-embedded carbon nanotubes for perpendicular recording media. Diam Relat. Mater. 12:799–805. doi:10.1016/S0925-9635(02)00231-5
Leonhardt A, Ritschel M, Kozhuharova R et al (2003) Synthesis and properties of filled carbon nanotubes. Diam Relat Mater 12:790–793. doi:10.1016/S0925-9635(02)00325-4
Meyyappan M, Delzeit L, Cassell A et al (2003) Carbon nanotube growth by PECVD: a review. Plasma Sources Sci Technol 12:205–216. doi:10.1088/0963-0252/12/2/312
Müller C, Golberg D, Leonhardt A et al (2006) Growth studies, TEM and XRD investigations of iron-filled carbon nanotubes. Phys Stat Sol (a) 203:1064–1068
Qian D, Dickey EC, Andrews R et al (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2870. doi:10.1063/1.126500
Rao AM, Jorio A, Pimenta MA et al (2000) Polarized Raman study of aligned multiwalled carbon nanotubes. Phys Rev Lett 84:1820–1823. doi:10.1103/PhysRevLett.84.1820
Saito Y, Hamaguchi K, Hata K et al (1997) Conical beams from open nanotubes. Nature 389:554–555. doi:10.1038/39221
Sears GW, Hudson JB (1963) Mobility of silver crystallites on surfaces of MoS2 and graphite. J Chem Phys 39:2380–2381. doi:10.1063/1.1701454
Takagi D, Hibino H, Suzuki S et al (2007) Carbon nanotube growth from semiconductor nanoparticles. Nano Lett 7:2272–2275. doi:10.1021/nl0708011
Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52. doi:10.1038/29954
Thess A, Lee R, Nikolaev P et al (1996) Crystalline ropes of metallic carbon nanotubes. Science 273:483–487. doi:10.1126/science.273.5274.483
Thomas JM, Walker PL (1964) Mobility of metal particles on a graphite substrate. J Chem Phys 41:587–588. doi:10.1063/1.1725926
Tiller WA (1991) The science of crystallization: microscopic interfacial phenomena. Cambridge University Press, Cambridge
Tu Y, Huang ZP, Wang DZ et al (2002) Growth of aligned carbon nanotubes with controlled site density. Appl Phys Lett 80:4018–4020. doi:10.1063/1.1482790
Wei J, Jiang B, Zhang X et al (2003) Raman study on double-walled carbon nanotubes. Chem Phys Lett 376:753–757. doi:10.1016/S0009-2614(03)01076-5
Zhang X, Cao A, Wei B et al (2002) Rapid growth of well-aligned carbon nanotube arrays. Chem Phys Lett 362:285–290. doi:10.1016/S0009-2614(02)01025-4
Zhao X, Ando Y, Qin L et al (2002) Characteristic Raman spectra of multiwalled carbon nanotubes. Phys B 323:265–266. doi:10.1016/S0921-4526(02)00986-9
Zou L, Lv R, Kang F et al (2008) Preparation and application of bamboo-like carbon nanotubes in lithium ion batteries. J Power Sources 184:566–569. doi:10.1016/j.jpowsour.2008.02.030