Multi relaxation time lattice Boltzmann simulations of transition in deep 2D lid driven cavity using GPU
Tài liệu tham khảo
Ghia, 1982, High-Resolutions for incompressible flow using the Navier–Stokes equations and a multigrid method, J Comput Phys, 48, 387, 10.1016/0021-9991(82)90058-4
Taneda, 1979, Visulization of separating Stokes flows, J Phys Soc Jpn, 46, 1935, 10.1143/JPSJ.46.1935
Shen, 1985, Low Reynolds number flows over cavities, Phys Fluids, 28, 3191, 10.1063/1.865366
Patil, 2006, Lattice Boltzmann simulation of lid-driven flow in deep cavities, Comput Fluids, 35, 1116, 10.1016/j.compfluid.2005.06.006
Lin, 2011, Multi relaxation time lattice Boltzmann simulations of deep lid driven cavity flows at different aspect ratios, Comput Fluids, 45, 233, 10.1016/j.compfluid.2010.12.012
Pan, 1967, Steady flow in rectangular cavities, J Fluid Mech, 28, 643, 10.1017/S002211206700237X
Shankar, 2000, Fluid mechanics in the driven cavity, Annul Rev Fluid Mech, 32, 93, 10.1146/annurev.fluid.32.1.93
Hou, 1995, Simulation of cavity flow by the lattice Boltzmann method, J Comput Phys, 118, 329, 10.1006/jcph.1995.1103
Chen, 2007, Immersed boundary method based lattice Boltzmann method to simulate 2d and 3d complex geometry flows, Int J Mod Phys C, 18, 585, 10.1142/S0129183107010826
Erturk, 1982, Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers, Int J Num Meth Fluid, 48, 747, 10.1002/fld.953
Schreiber, 1983, Driven cavity flows by efficient numerical techniques, J Comput Phys, 49, 310, 10.1016/0021-9991(83)90129-8
Bruneau, 2006, The 2D lid-driven cavity problem revisited, Comput Fluids, 35, 326, 10.1016/j.compfluid.2004.12.004
Fortin, 1997, Localization of Hopf bifurcations in fluid flow problems, Int J Numer Meth Fluids, 24, 1185, 10.1002/(SICI)1097-0363(19970615)24:11<1185::AID-FLD535>3.0.CO;2-X
Peng, 2003, Transition in a 2-D lid-driven cavity flow, Comput Fluids, 32, 337, 10.1016/S0045-7930(01)00053-6
Cazemier, 1998, Proper orthogonal decomposition and low-dimensional models for driven cavity flows, Phys Fluids, 10, 1685, 10.1063/1.869686
Poliashenk, 1995, A direct method for computation of simple bifurcation, J Comput Phys, 121, 246, 10.1016/S0021-9991(95)90068-3
Lallemand, 2000, Theory of the lattice Boltzmann method: dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys Rev E, 61, 6546, 10.1103/PhysRevE.61.6546
Wu, 2004, Simulation of lid-driven cavity flows by parallel lattice Boltzmann method using multi-relaxation-time scheme, Int J Numer Meth Fluids, 46, 921, 10.1002/fld.787
Yu, 2006, LES of turbulent square jet flow using an MRT lattice Boltzmann model, Comput Fluids, 35, 957, 10.1016/j.compfluid.2005.04.009
Qian, 1992, Lattice BGK model for Navier–Stokes equation, Europhys Lett, 17, 479, 10.1209/0295-5075/17/6/001
Tölke, 2008, Implementation of a Lattice Boltzmann kernel using the compute unified device architecture developed by nVIDIA, Comput Visual Sci, 13, 29, 10.1007/s00791-008-0120-2
Tölke, 2008, TeraFLOP computing on a desktop PC with GPUs for 3D CFD, Int J Comput Fluid Dynam, 22, 443, 10.1080/10618560802238275
Ryoo S, Rodrigues CI, Baghsorkhi SS, Stone SS, Kirk DB, Hwu WW. Optimization principles and application performance evaluation of a multithreaded GPU using CUDA. In ACM SIGPLAN symposium on principles and practice of parallel programming (PPoPP). vol. 73; 2008.
Wellein, 2006, On the single processor performance of simple lattice Boltzmann kernels, Comput Fluids, 35, 910, 10.1016/j.compfluid.2005.02.008
Ho, 2009, Consistent boundary conditions for 2D and 3D laminar lattice Boltzmann simulations, CMES-Comput Model Eng Sci, 44, 137
Chang, 2009, Boundary conditions for lattice Boltzmann simulations with complex geometry flows, Comput Mathe Appl, 58, 940, 10.1016/j.camwa.2009.02.016
Tiesinga, 2002, Bifurcation analysis of incompressible flow in a driven cavity by the Newton–Picard method, J Comput Appl Mathe, 140, 751, 10.1016/S0377-0427(01)00515-5
Obrecht, 2011, A new approach to the lattice Boltzmann method for graphics processing units, Comput Mathe Appl, 61, 3628, 10.1016/j.camwa.2010.01.054
