Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: Risk mitigation or trade-off?
Tài liệu tham khảo
Aitken, R., Hankin, S., Ross, B., Tran, C.L., Stone, V., Fernandes, T.F., Donaldson, K., Duffin, R., Chaudhry, Q., Wilkins, T.A., Wilkins, S., Levy, L., Rocks, S., Maynard, A., 2009. EMERGNANO: a review of completed and near completed environmental, health and safety research on nanomaterials and nanotechnology. UK Department for Environment, Food and Rural Affairs (DEFRA), March. http://randd.defra.gov.uk/Document.aspx?Document=CB0409_7910_FRP.pdf.
Auffan, 2006, In vitro interactions between DMSA-coated maghemite nanoparticles and human fibroblasts: a physicochemical and cyto-genotoxical study, Environ. Sci. Technol., 40, 4367, 10.1021/es060691k
Auffan, 2008, Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli, Environ. Sci. Technol., 42, 6730, 10.1021/es800086f
Baer, 2008, Characterization challenges for nanomaterials, Surf. Interface Anal., 40, 529, 10.1002/sia.2726
Baun, 2009, Setting the limits for engineered nanoparticles in European surface waters, J. Environ. Monit., 11, 1774, 10.1039/b909730a
Birak, 2009, Dense non-aqueous phase liquids at former manufactured gas plants: challenges to modeling and remediation, J. Contam. Hydrol., 105, 81, 10.1016/j.jconhyd.2008.12.001
Boxall, A.B.A., Chaudhry, Q., Sinclair, C., Jones, A., Aitken, R., Jefferson, B. Watts, C., 2007. Current and future predicted environmental exposure to engineered nanoparticles. Central Science Laboratory, Sand Hutton, York, UK. http://randd.defra.gov.uk/Document.aspx?Document=CB01098_6270_FRP.pdf.
Briggs, 2008, A framework for integrated environmental health impact assessment of systemic risks, Environ. Health, 7, 61, 10.1186/1476-069X-7-61
Brown, 2009, The new deficit model, Nat. Nanotechnol., 4, 609, 10.1038/nnano.2009.278
Calleja, 1994, Comparative acute toxicity of the first 50 multicentre evaluation of in vitro cytotoxicity chemicals to aquatic non-vertebrates, Arch. Environ. Contam. Toxicol., 26, 69, 10.1007/BF00212796
Cao, 2006, Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles, J. Hazard. Mater., B132, 213, 10.1016/j.jhazmat.2005.09.008
Chang, 2009, Remediation of pyrene-contaminated soil by synthesized nanoscale zero-valent iron particles, J. Environ. Sci. Health, 44, 576, 10.1080/10934520902784609
Choe, 2000, Kinetics of reductive denitrification by nanoscale zero-valent iron, Chemosphere, 41, 1307, 10.1016/S0045-6535(99)00506-8
Choe, 2001, Rapid reductive destruction of hazardous organic compounds by nanoscale Fe0, Chemosphere, 42, 367, 10.1016/S0045-6535(00)00147-8
Choi, 2009, The impact of toxicity testing costs on nanomaterial regulation, Environ. Sci. Technol., 43, 3030, 10.1021/es802388s
Civie, P., Morose, G., 2006. Five chemicals study: alternatives assessment process guidance. Toxics Use Reduction Institute, March. http://www.turi.org/content/download/3195/29306/file/AppendixA-final.pdf.
Collingridge, 1980
Colvin, 2009, Correlating structure with toxicity for engineered nanoparticles: towards safety by design
Crimi, 2003, Geochemical effects on metals following permanganate oxidation of DNAPLs, Ground Water, 41, 458, 10.1111/j.1745-6584.2003.tb02380.x
Dale, 2008, Enhancing the ecological risk assessment process, Integr. Environ. Assess. Manage., 4, 306, 10.1897/IEAM_2007-066.1
Davis, 2001, The paradoxes of MTBE, Toxicol. Sci., 61, 211, 10.1093/toxsci/61.2.211
Dupont, 2007. Nanomaterial risk assessment worksheet: zero valent nano sized iron nanoparticles (nZVI) for environmental remediation. http://www.edf.org/documents/6554_nZVI_Summary.pdf.
EC, 2009. Environmental Assessment. http://ec.europa.eu/environment/eia/home.htm.
Elliott, 2001, Field assessment of nanoscale bimetallic particles for groundwater treatment, Environ. Sci. Technol., 35, 4922, 10.1021/es0108584
Environmental Defense, Dupont, 2007. Nano Risk Framework, Washington DC. http://www.environmentaldefense.org/documents/6496_Nano%20Risk%20Framework.Pdf.
European Commission (EC), 2000, Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy, Off. J. Eur. Commun., 2000, 1
European Environment Agency, 2001. Late lessons from early warnings: the precautionary principle 1896-2000. Environmental issue report 22. http://www.eea.europa.eu/publications/environmental_issue_report_2001_22/Issue_Report_No_22.pdf.
European Union (EU), 2006, Stockholm convention on persistent organic pollutants, Off. J. Eur. Union, L209, 3
Friis, 2006, Anaerobic dechlorination and redox activities after full-scale electrical resistance heating (ERH) of a TCE-contaminated aquifer, J. Contam. Hydrol., 88, 219, 10.1016/j.jconhyd.2006.07.001
Gavaskar, A., Tatar, L., Condit, W., 2005. Cost and performance report nanoscale zero-valentiron technologies for source remediation. Contract report CR-05-007-ENV, Port Hueneme, CA.
Gerlach, 2000, Dissimilatory iron-reducing bacteria can influence the reduction of carbon tetrachloride by iron metal, Environ. Sci. Technol., 34, 2461, 10.1021/es991200h
Giasuddin, 2007, Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal, Environ. Sci. Technol., 41, 2022, 10.1021/es0616534
Gillham, 1994, Enhanced degradation of halogenated aliphatics by zero-valent iron, Ground Water, 32, 958, 10.1111/j.1745-6584.1994.tb00935.x
Glazier, 2003, Nanotechnology takes root, Civ. Eng., 73, 64
Grieger, 2010, Redefining risk research priorities for nanomaterials, J. Nanopart. Res., 12, 383, 10.1007/s11051-009-9829-1
Hansen, 2008, Late lessons from early warnings for nanotechnology, Nat. Nanotechnol., 3, 444, 10.1038/nnano.2008.198
Hansen, 2008, The precautionary principle and risk–risk tradeoffs, J. Risk Res., 11, 423, 10.1080/13669870801967192
Hassellöv, 2008, Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles, Ecotoxicology, 17, 344, 10.1007/s10646-008-0225-x
He, 2005, Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water, Environ. Sci. Technol., 39, 3314, 10.1021/es048743y
He, 2007, Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater, Ind. Eng. Chem. Res., 46, 29, 10.1021/ie0610896
Henn, 2006, Utilization of nanoscale zero-valent iron for source remediation - a case study, Remediation, 16, 57, 10.1002/rem.20081
Heron, 2009, Thermal treatment of eight cvoc source zones to near nondetect concentrations, Ground Water Monit. Rem., 29, 56, 10.1111/j.1745-6592.2009.01247.x
Hrapovic, 2005, Laboratory study of treatment of trichloroethene by chemical oxidation followed by bioremediation, Environ. Sci. Technol., 39, 2888, 10.1021/es049017y
Ichinose, N., 1992. Superfine Particle Technology, Springer, Berlin.
Illman, 2009, Performance assessment of bioremediation and natural attenuation, Environ. Sci. Technol., 39, 209, 10.1080/10643380701413385
Imada, 2008, Water table depth affects Populus alba fine root growth and whole plant biomass, Funct. Ecol., 22, 1018, 10.1111/j.1365-2435.2008.01454.x
International Council on Nanotechnology (ICON), 2009. Advancing the eco-responsible design and disposal of engineered nanomaterials: an international workshop, March 9-10, Houston. http://cohesion.rice.edu/centersandinst/icon/events.cfm?doc_id=12964.
International Risk Governance Council (IRGC), 2007. Nanotechnology risk governance: recommendations for a global, coordinated approach to the governance of potential risks, Geneva. http://www.irgc.org/IMG/pdf/PB_nanoFINAL2_2_.pdf.
IRGC, 2009. Risk governance deficits: an analysis and illustration of the most common deficits in risk governance, Geneva. http://www.irgc.org/IMG/pdf/IRGC_rgd_web_final.pdf.
Johnson, 2009, Natural organic matter enhanced mobility of nano zero-valent iron, Environ. Sci. Technol., 43, 5455, 10.1021/es900474f
Joo, 2004, Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron, Environ. Sci. Technol., 38, 2242, 10.1021/es035157g
Kanel, 2007, Transport characteristics of surface-modified nanoscale zero-valent iron in porous media, Water Sci. Technol., 55, 157, 10.2166/wst.2007.002
Kanel, 2005, Removal of arsenic(iii) from groundwater by nanoscale zero-valent iron, Environ. Sci. Technol., 39, 1291, 10.1021/es048991u
Kang, 2008, Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity, Environ. Sci. Technol., 42, 7528, 10.1021/es8010173
Kapustka, 2008, Limitations of the current practices used to perform ecological risk assessment, Integr. Environ. Assess. Manage., 4, 290, 10.1897/IEAM_2007-084.1
Karlsson, 2009, Size-dependent toxicity of metal oxide particles-a comparison between nano- and micrometer size, Toxicol. Lett., 188, 112, 10.1016/j.toxlet.2009.03.014
Karn, 2009, Nanotechnology and in situ remediation: a review of the benefits and potential risks, Environ. Health Perspect., 117, 1823, 10.1289/ehp.0900793
Keenan, 2009, Oxidative stress induced by zero-valent iron nanoparticles and Fe(II) in human bronchial epithelial cells, Environ. Sci. Technol., 43, 4555, 10.1021/es9006383
Kim, 2008, Rapid dechlorination of polychlorinated dibenzo-p-dioxins by bimetallic and nanosized zerovalent iron, Environ. Sci. Technol., 42, 4106, 10.1021/es702560k
Kim, 2009, Fe0 nanoparticles remain mobile in porous media after aging due to slow desorption of polymeric surface modifiers, Environ. Sci. Technol., 43, 3824, 10.1021/es802978s
Kirschling, 2010, Impact of nanoscale zero valent iron on geochemistry and microbial populations, Environ. Sci. Technol., 44, 3474, 10.1021/es903744f
Klaine, 2008, Nanomaterials in the environment: behavior, fate, bioavailability, and effects, Environ. Toxicol. Chem., 27, 1825, 10.1897/08-090.1
Klaper, 2009, Toxicity biomarker expression in daphnids exposed to manufactured nanoparticles: changes in toxicity with functionalization, Environ. Pollut., 157, 1152, 10.1016/j.envpol.2008.11.010
Latif, B., 2006. Nanotechnology for site remediation: fate and transport of nanoparticles in soil land water systems. Prepared for US Environmental Protection Agency, Washington D.C. http://www.clu-in.org/download/studentpapers/B_Latif_Nanotechology.pdf.
Lee, 2008, Bactericidal effect of zero-valent iron nanoparticles on escherichia coli, Environ. Sci. Technol., 42, 4927, 10.1021/es800408u
Lemming, G., 2010. Environmental assessment of contaminated site remediation in a life cycle perspective. PhD thesis, Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby.
Lemming, 2010, Life cycle assessment of soil and groundwater remediation technologies: literature review, Int. J. Life Cycle Assess., 15, 115, 10.1007/s11367-009-0129-x
Lemming, 2010, Risk-based economic decision analysis of remediation options at a PCE-contaminated site, J. Environ. Manage., 10.1016/j.jenvman.2010.01.011
Li, 2006, Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects, Crit. Rev. Solid State Mater. Sci., 31, 11, 10.1080/10408430601057611
Li, 2009, Effects of waterborne nano-iron on medaka (oryzias latipes): antioxidant enzymatic activity, lipid peroxidation and histopathology, Ecotoxicol. Environ. Saf., 72, 684, 10.1016/j.ecoenv.2008.09.027
Li, 2010, Adsorbed polymer and NOM limits adhesion and toxicity of nano scale zero-valent iron (nZVI) to E. coli, Environ. Sci. Technol., 44, 3462, 10.1021/es9031198
Lien, 1999, Transformation of chlorinated methanes by nanoscale iron particles, J. Environ. Eng., 125, 1042, 10.1061/(ASCE)0733-9372(1999)125:11(1042)
Lien, 2001, Nanoscale iron particles for complete reduction of chlorinated ethenes, Colloids Surf., 191, 97, 10.1016/S0927-7757(01)00767-1
Limbach, 2007, Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress, Environ. Sci. Technol., 41, 4158, 10.1021/es062629t
Lin, 2008, Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater, Sci. Technol. Adv. Mater., 9, 025015, 10.1088/1468-6996/9/2/025015
Linkov, 2007, Multi-criteria decision analysis and environmental risk assessment for nanomaterials, J. Nanopart. Res., 9, 543, 10.1007/s11051-007-9211-0
Linkov, 2009, Nano risk governance: current developments and future perspectives, Nanotechnol. Law Bus., 6, 203
Liu, 2006, Effect of particle age (Fe0 content) and solution pH on nZVI reactivity: H2 evolution and TCE dechlorination, Environ. Sci. Technol., 40, 6085, 10.1021/es060685o
Liu, 2005, TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties, Environ. Sci. Technol., 39, 1338, 10.1021/es049195r
Liu, 2007, Effect of TCE concentration and dissolved groundwater solutes on nZVI-promoted TCE dechlorination and H2 evolution, Environ. Sci. Technol., 41, 7881, 10.1021/es0711967
Lowry, 2009, Nanomaterial transport, transformation, and fate in the environment: a risk-based perspective on research needs, 125
Lowry, 2004, Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution, Environ. Sci. Technol., 38, 5208, 10.1021/es049835q
Lowry, G.V., Alvarez, P.J.J., Kim, C., Minkley, E., Tilton, R.D., 2009. 2008 Progress Report: The effect of surface coatings on the environmental and microbial fate of nanoiron and feoxide nanoparticles. US Environmental Protection Agency. http://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract/8443/report/2008.
Macé, 2006, Nanotechnology and groundwater remediation: a step forward in technology understanding, Remediation, 16, 23, 10.1002/rem.20079
Martuzzi, M., Tickner, J.A., 2004. The precautionary principle: protecting public health, the environment and the future of our children. World Health Organization, Copenhagen. http://www.who.it/InformationSources/Publications/Catalogue/20041119_1.
National Academy of Sciences, 2008. Review of the Federal Strategy for Nanotechnology-Related Environmental, Health, and Safety Research. The National Academies Press, Washington D.C. http://www.nap.edu/catalog/12559.html.
Nurmi, 2005, Characterization and properties of metallic iron nanoparticles: spectroscopy, electrochemistry, and kinetics, Environ. Sci. Technol., 39, 1221, 10.1021/es049190u
Oberdörster, E., Larkin, P., Rogers, J., 2006. Rapid environmental impact screening for engineered nanomaterials: a case study using microarray technology. Project on Emerging Nanotechnologies, Woodrow Wilson International Center for Scholars, June 2006, Washington D.C.
Organisation for Economic Co-operation and Development (OECD), 2009. Preliminary review of OECD test guidelines for their applicability to manufactured nanomaterials, July 10, Paris. http://www.olis.oecd.org/olis/2009doc.nsf/LinkTo/NT000049AE/$FILE/JT03267900.PDF.
Phenrat, 2007, Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions, Environ. Sci. Technol., 41, 284, 10.1021/es061349a
Phenrat, 2009, Adsorbed polyelectrolyte coatings decrease Fe0 nanoparticle reactivity with TCE in water: conceptual model and mechanisms, Environ. Sci. Technol., 43, 1507, 10.1021/es802187d
Phenrat, 2009, Partial oxidation (“aging”) and surface modification decrease the toxicity of nanosized zerovalent iron, Environ. Sci. Technol., 43, 195, 10.1021/es801955n
Quinn, 2005, Field demonstration of dnapl dehalogenation using emulsified zero-valent iron, Environ. Sci. Technol., 39, 1309, 10.1021/es0490018
Reinsch, 2010, Chemical transformations during aging of zero-valent iron nanoparticles in the presence of common groundwater dissolved constituents, Environ. Sci. Technol., 44, 3455, 10.1021/es902924h
Royal Commission on Environmental Pollution (RCEP), 2008. Novel materials in the environment: the case of nanotechnology, November, London. http://www.official-documents.gov.uk/document/cm74/7468/7468.pdf.
Sadeghiani, 2005, Genotoxicity and inflammatory investigation in mice treated with magnetite nanoparticles surface coated with polyaspartic acid, J. Magn. Mater., 289, 466, 10.1016/j.jmmm.2004.11.131
Saleh, 2005, Adsorbed triblock copolymers deliver reactive iron nanoparticles to the oil/water interface, Nano Lett., 5, 2489, 10.1021/nl0518268
Saleh, 2007, Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media, Environ. Eng. Sci., 24, 45, 10.1089/ees.2007.24.45
Saleh, 2008, Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns, Environ. Sci. Technol., 42, 3349, 10.1021/es071936b
Sarathy, 2008, Aging of iron nanoparticles in aqueous solution: effects on structure and reactivity, J. Phys. Chem., 112, 2286
Scheutz, 2008, Concurrent ethene generation and growth of dehalococcoides containing vinyl chloride reductive dehalogenase genes during an enhanced reductive dechlorination field demonstration, Environ. Sci. Technol., 42, 9302, 10.1021/es800764t
Schrick, 2002, Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles, Chem. Mater., 14, 5140, 10.1021/cm020737i
Schrick, 2004, Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater, Chem. Mater., 16, 2187, 10.1021/cm0218108
Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR), 2009. Risk assessment of products of nanotechnologies. European Commission, January 19, Brussels. http://ec.europa.eu/health/ph_risk/committees/04_scenihr/docs/scenihr_o_023.pdf.
Seager, 2008, Uncertainty in life cycle assessment of nanomaterials: multi-criteria decision analysis framework for single wall carbon nanotubes in power applications, 423
Sellers, 2009
Shatkin, 2008, Informing environmental decision making by combining life cycle assessment and risk analysis, J. Ind. Ecol., 12, 278, 10.1111/j.1530-9290.2008.00031.x
Shaw, L. 2009. Deployment of nZVI to soil for polychlorinated biphenyl remediation: impacts on soil microbial communities. Organisation for Economic Co-operation and Development Conference on Potential Environmental Benefits of Nanotechnology. http://www.oecd.org/dataoecd/23/0/44027857.pdf.
Siegrist, 2001
Singh, 2009, Nanogenotoxicology: the DNA damaging potential of engineered nanomaterials, Biomaterials, 30, 3891, 10.1016/j.biomaterials.2009.04.009
Sirk, 2009, Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models, Environ. Sci. Technol., 43, 3803, 10.1021/es803589t
Stumm, 1996
Sun, 2006, Treatment of groundwater polluted by arsenic compounds by zero valent iron, J. Hazard. Mater., 129, 297, 10.1016/j.jhazmat.2005.08.026
Tervonen, 2009, Risk-based classification system of nanomaterials, J. Nanopart. Res., 11, 757, 10.1007/s11051-008-9546-1
The Royal Society, The Royal Academy of Engineering, 2004. Nanoscience and nanotechnologies: opportunities and uncertainties, London. http://www.nanotec.org.uk/finalReport.htm.
Theron, 2008, Nanotechnology and water treatment: applications and emerging opportunities, Crit. Rev. Microbiol., 34, 43, 10.1080/10408410701710442
Tiraferri, 2008, Reduced aggregation and sedimentation of zero-valent iron nanoparticles in the presence of guar gum, J. Colloid Interface Sci., 324, 71, 10.1016/j.jcis.2008.04.064
Tratnyek, 2006, Nanotechnologies for environmental cleanup, Nano Today, 1, 44, 10.1016/S1748-0132(06)70048-2
Tsitonaki, 2008, Effects of heat-activated persulfate oxidation on soil microorganisms, Water Res., 42, 1013, 10.1016/j.watres.2007.09.018
Tsitonaki, 2010, In situ chemical oxidation of contaminated soil and groundwater using persulfate: a review, Crit. Rev. Environ. Sci. Technol., 40, 55, 10.1080/10643380802039303
Tuomi, P., Hains, S., Takala, J., Hyödynmaa, M., Manni-Rantanen, L., 2008. Use of nZVI for ground water remediation. Golder Associates. http://www.mutku.fi/files/day1/Tuomi_Nordrocs_NZVI_24.9.2008.pdf.
US EPA, 2009. Nanomaterial Research Strategy. US Environmental Protection Agency Report 620/K-09/011, Washington, DC. http://www.epa.gov/nanoscience/files/nanotech_research_strategy_final.pdf.
US Environmental Protection Agency (US EPA), 2001. Cost analysis for selected groundwater cleanup projects: pump and treat systems and permeable reactive barriers. US Environmental Protection Agency Report 542-R-00-013, Washington, DC. http://www.epa.gov/tio/download/remed/542r00013.pdf.
Uyusur, 2009, A laboratory column investigation for the treatment of Cr(VI) with zero-valent iron, Environ. Eng. Sci., 26, 385, 10.1089/ees.2007.0089
Varadhi, 2005, Full-scale nanoiron injection for treatment of groundwater contaminated with chlorinated hydrocarbons
Vecchia, 2009, Transport in porous media of highly concentrated iron micro- and nanoparticles in the presence of xanthan gum, Environ. Sci. Technol., 43, 8942, 10.1021/es901897d
Vlek, 2009, A precautionary-principled approach towards uncertain-risk situations: review and decision-theoretic elaboration, Erasmus Law Rev., 2, 129
Wiesner, 2006, Assessing the risks of manufactured nanomaterials, Environ. Sci. Technol., 40, 4336, 10.1021/es062726m
Wu, 2005, Preparation of cellulose acetate supported zero-valent iron nanoparticles for the dechlorination of trichloroethylene in water, J. Nanopart. Res., 7, 469, 10.1007/s11051-005-4271-5
Xiu, 2010, Effects of nano-scale zero-valent iron particles on a mixed culture dechlorinating trichloroethylene, Bioresour. Technol., 101, 1141, 10.1016/j.biortech.2009.09.057
Yoo, 2007, Electrochemically fabricated zero-valent iron, iron-nickel, and iron-palladium nanowires for environmental remediation applications, Water Sci. Technol., 55, 149, 10.2166/wst.2007.017
Zhang, 2003, Nanoscale iron particles for environmental remediation: an overview, J. Nanopart. Res., 5, 323, 10.1023/A:1025520116015
Zhang, 1998, Treatment of chlorinated organic contaminants with nanoscale bimetallic particles, Catal. Today, 40, 387, 10.1016/S0920-5861(98)00067-4
Zhu, 2008, Comparative study of pulmonary responses to nano- and submicron-sized ferric oxide in rats, Toxicology, 247, 102, 10.1016/j.tox.2008.02.011