Melanopsin Tristability for Sustained and Broadband Phototransduction

Neuron - Tập 85 - Trang 1043-1055 - 2015
Alan Joseph Emanuel1,2,3, Michael Tri Hoang Do1,2,3
1F.M. Kirby Neurobiology Center and Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Center for Life Science 12061, 3 Blackfan Circle, Boston, MA 02115, USA
2Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
3Division of Sleep Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, 02115, USA

Tài liệu tham khảo

Azuma, 1985, Absorbance and circular dichroism spectra of 7-cis photoproduct formed by irradiating frog rhodopsin, Photochem. Photobiol., 41, 165, 10.1111/j.1751-1097.1985.tb03466.x Berson, 2002, Phototransduction by retinal ganglion cells that set the circadian clock, Science, 295, 1070, 10.1126/science.1067262 Berson, 2010, Morphology and mosaics of melanopsin-expressing retinal ganglion cell types in mice, J. Comp. Neurol., 518, 2405, 10.1002/cne.22417 Brainard, 2001, Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor, J. Neurosci., 21, 6405, 10.1523/JNEUROSCI.21-16-06405.2001 Cronin, 1982, Quantum efficiency and photosensitivity of the rhodopsin equilibrium metarhodopsin conversion in crayfish photoreceptors, Photochem. Photobiol., 36, 447, 10.1111/j.1751-1097.1982.tb04401.x Cronin, 2001, Sensory adaptation. Tunable colour vision in a mantis shrimp, Nature, 411, 547, 10.1038/35079184 Dacey, 2005, Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN, Nature, 433, 749, 10.1038/nature03387 Dartnall, 1972, Photosensitivity, 122 Do, 2010, Intrinsically photosensitive retinal ganglion cells, Physiol. Rev., 90, 1547, 10.1152/physrev.00013.2010 Do, 2013, Adaptation to steady light by intrinsically photosensitive retinal ganglion cells, Proc. Natl. Acad. Sci. USA, 110, 7470, 10.1073/pnas.1304039110 Do, 2009, Photon capture and signalling by melanopsin retinal ganglion cells, Nature, 457, 281, 10.1038/nature07682 Ecker, 2010, Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision, Neuron, 67, 49, 10.1016/j.neuron.2010.05.023 Fu, 2005, Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin, Proc. Natl. Acad. Sci. USA, 102, 10339, 10.1073/pnas.0501866102 Govardovskii, 2000, In search of the visual pigment template, Vis. Neurosci., 17, 509, 10.1017/S0952523800174036 Güler, 2008, Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision, Nature, 453, 102, 10.1038/nature06829 Hardie, 2008, 1.05 – Phototransduction in microvillar photoreceptors of Drosophila and other invertebrates, 77 Hatori, 2008, Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses, PLoS ONE, 3, e2451, 10.1371/journal.pone.0002451 Hattar, 2003, Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice, Nature, 424, 76, 10.1038/nature01761 Henderson, 2000, Single photon responses in Drosophila photoreceptors and their regulation by Ca2+, J. Physiol., 524, 179, 10.1111/j.1469-7793.2000.00179.x Hillman, 1983, Transduction in invertebrate photoreceptors: role of pigment bistability, Physiol. Rev., 63, 668, 10.1152/physrev.1983.63.2.668 Johnsen, 2006, Crepuscular and nocturnal illumination and its effects on color perception by the nocturnal hawkmoth Deilephila elpenor, J. Exp. Biol., 209, 789, 10.1242/jeb.02053 Koyanagi, 2005, Cephalochordate melanopsin: evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells, Curr. Biol., 15, 1065, 10.1016/j.cub.2005.04.063 Lin, 2008, Restoration of visual function in retinal degeneration mice by ectopic expression of melanopsin, Proc. Natl. Acad. Sci. USA, 105, 16009, 10.1073/pnas.0806114105 Lucas, 2001, Characterization of an ocular photopigment capable of driving pupillary constriction in mice, Nat. Neurosci., 4, 621, 10.1038/88443 Lucas, 2003, Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice, Science, 299, 245, 10.1126/science.1077293 Lucas, 2014, Measuring and using light in the melanopsin age, Trends Neurosci., 37, 1, 10.1016/j.tins.2013.10.004 Maeda, 1978, Formation of a 7-cis retinal pigment by irradiating cattle rhodopsin at low temperatures, FEBS Lett., 92, 77, 10.1016/0014-5793(78)80725-X Maeda, 1979, Formation of 7-cis- and 13-cis-retinal pigments by irradiating squid rhodopsin, Biochemistry, 18, 1449, 10.1021/bi00575a010 Makino, 1999, Spectral tuning in salamander visual pigments studied with dihydroretinal chromophores, Biophys. J., 77, 1024, 10.1016/S0006-3495(99)76953-5 Matsuyama, 2012, Photochemical properties of mammalian melanopsin, Biochemistry, 51, 5454, 10.1021/bi3004999 Mawad, 2008, Absence of long-wavelength photic potentiation of murine intrinsically photosensitive retinal ganglion cell firing in vitro, J. Biol. Rhythms, 23, 387, 10.1177/0748730408323063 Melyan, 2005, Addition of human melanopsin renders mammalian cells photoresponsive, Nature, 433, 741, 10.1038/nature03344 Merbs, 1992, Absorption spectra of human cone pigments, Nature, 356, 433, 10.1038/356433a0 Mohawk, 2012, Central and peripheral circadian clocks in mammals, Annu. Rev. Neurosci., 35, 445, 10.1146/annurev-neuro-060909-153128 Mrosovsky, 2003, Impaired masking responses to light in melanopsin-knockout mice, Chronobiol. Int., 20, 989, 10.1081/CBI-120026043 Mure, 2007, Melanopsin-dependent nonvisual responses: evidence for photopigment bistability in vivo, J. Biol. Rhythms, 22, 411, 10.1177/0748730407306043 Mure, 2009, Melanopsin bistability: a fly’s eye technology in the human retina, PLoS ONE, 4, e5991, 10.1371/journal.pone.0005991 Nelson, 1991, Sensitivity and integration in a visual pathway for circadian entrainment in the hamster (Mesocricetus auratus), J. Physiol., 439, 115, 10.1113/jphysiol.1991.sp018660 Newman, 2003, Melanopsin forms a functional short-wavelength photopigment, Biochemistry, 42, 12734, 10.1021/bi035418z Ostroy, 1978, Characteristics of Drosophila rhodopsin in wild-type and norpA vision transduction mutants, J. Gen. Physiol., 72, 717, 10.1085/jgp.72.5.717 Panda, 2002, Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting, Science, 298, 2213, 10.1126/science.1076848 Panda, 2005, Illumination of the melanopsin signaling pathway, Science, 307, 600, 10.1126/science.1105121 Perez-Leon, 2006, Synaptic inputs to retinal ganglion cells that set the circadian clock, Eur. J. Neurosci., 24, 1117, 10.1111/j.1460-9568.2006.04999.x Provencio, 1998, Melanopsin: An opsin in melanophores, brain, and eye, Proc. Natl. Acad. Sci. USA, 95, 340, 10.1073/pnas.95.1.340 Provencio, 2000, A novel human opsin in the inner retina, J. Neurosci., 20, 600, 10.1523/JNEUROSCI.20-02-00600.2000 Qiu, 2005, Induction of photosensitivity by heterologous expression of melanopsin, Nature, 433, 745, 10.1038/nature03345 Rao, 2013, A direct and melanopsin-dependent fetal light response regulates mouse eye development, Nature, 494, 243, 10.1038/nature11823 Renna, 2011, Light acts through melanopsin to alter retinal waves and segregation of retinogeniculate afferents, Nat. Neurosci., 14, 827, 10.1038/nn.2845 Schmidt, 2009, Functional and morphological differences among intrinsically photosensitive retinal ganglion cells, J. Neurosci., 29, 476, 10.1523/JNEUROSCI.4117-08.2009 Schmidt, 2011, Structure and function of bistratified intrinsically photosensitive retinal ganglion cells in the mouse, J. Comp. Neurol., 519, 1492, 10.1002/cne.22579 Schmidt, 2011, Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions, Trends Neurosci., 34, 572, 10.1016/j.tins.2011.07.001 Sekharan, 2011, Why 11-cis-retinal? Why not 7-cis-, 9-cis-, or 13-cis-retinal in the eye?, J. Am. Chem. Soc., 133, 19052, 10.1021/ja208789h Sekharan, 2012, The active site of melanopsin: the biological clock photoreceptor, J. Am. Chem. Soc., 134, 19536, 10.1021/ja308763b Sexton, 2012, Melanopsin is highly resistant to light and chemical bleaching in vivo, J. Biol. Chem., 287, 20888, 10.1074/jbc.M111.325969 Sharpe, 2005, A luminous efficiency function, V∗(λ), for daylight adaptation, J. Vis., 5, 948 Shichida, 2009, Evolution of opsins and phototransduction, Philos. Trans. R. Soc. Lond. B Biol. Sci., 364, 2881, 10.1098/rstb.2009.0051 Shichida, 1991, Differences in the photobleaching process between 7-cis- and 11-cis-rhodopsins: a unique interaction change between the chromophore and the protein during the lumi-meta I transition, Biochemistry, 30, 5918, 10.1021/bi00238a016 Shirzad-Wasei, 2013, Large scale expression and purification of mouse melanopsin-L in the baculovirus expression system, Protein Expr. Purif., 91, 134, 10.1016/j.pep.2013.07.010 Stavenga, 2010, On visual pigment templates and the spectral shape of invertebrate rhodopsins and metarhodopsins, J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol., 196, 869, 10.1007/s00359-010-0568-7 Takahashi, 2008, The genetics of mammalian circadian order and disorder: implications for physiology and disease, Nat. Rev. Genet., 9, 764, 10.1038/nrg2430 Walker, 2008, Photochemistry of retinal chromophore in mouse melanopsin, Proc. Natl. Acad. Sci. USA, 105, 8861, 10.1073/pnas.0711397105 Wang, 2011, The cone-specific visual cycle, Prog. Retin. Eye Res., 30, 115, 10.1016/j.preteyeres.2010.11.001 Wong, 2012, A retinal ganglion cell that can signal irradiance continuously for 10 hours, J. Neurosci., 32, 11478, 10.1523/JNEUROSCI.1423-12.2012 Wong, 2005, Photoreceptor adaptation in intrinsically photosensitive retinal ganglion cells, Neuron, 48, 1001, 10.1016/j.neuron.2005.11.016 Wong, 2007, Synaptic influences on rat ganglion-cell photoreceptors, J. Physiol., 582, 279, 10.1113/jphysiol.2007.133751 Xue, 2011, Melanopsin signalling in mammalian iris and retina, Nature, 479, 67, 10.1038/nature10567 Ye, 2011, A synthetic optogenetic transcription device enhances blood-glucose homeostasis in mice, Science, 332, 1565, 10.1126/science.1203535 Zhu, 2007, Melanopsin-dependent persistence and photopotentiation of murine pupillary light responses, Invest. Ophthalmol. Vis. Sci., 48, 1268, 10.1167/iovs.06-0925