HDL functionality in reverse cholesterol transport — Challenges in translating data emerging from mouse models to human disease
Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids - Tập 1861 - Trang 566-583 - 2016
Tài liệu tham khảo
Glomset, 1968, The plasma lecithins: cholesterol acyltransferase reaction, J. Lipid Res., 9, 155, 10.1016/S0022-2275(20)43114-1
Rader, 2014, HDL and cardiovascular disease, Lancet, 384, 618, 10.1016/S0140-6736(14)61217-4
Voight, 2012, Plasma HDL cholesterol and risk of myocardial infarction: a Mendelian randomisation study, Lancet, 380, 572, 10.1016/S0140-6736(12)60312-2
Brunham, 2015, Human genetics of HDL: insight into particle metabolism and function, Prog. Lipid Res., 58, 14, 10.1016/j.plipres.2015.01.001
Camont, 2011, Biological activities of HDL subpopulations and their relevance to cardiovascular disease, Trends Mol. Med., 17, 594, 10.1016/j.molmed.2011.05.013
Asztalos, 2011, Metabolic and functional relevance of HDL subspecies, Curr. Opin. Lipidol., 22, 176, 10.1097/MOL.0b013e3283468061
Rye, 2012, Predictive value of different HDL particles for the protection against or risk of coronary heart disease, Biochim. Biophys. Acta, 1821, 473, 10.1016/j.bbalip.2011.10.012
Mineo, 2012, Novel biological functions of high-density lipoprotein cholesterol, Circ. Res., 111, 1079, 10.1161/CIRCRESAHA.111.258673
Annema, 2015, HDL and atherothrombotic vascular disease, Handb. Exp. Pharmacol., 224, 369, 10.1007/978-3-319-09665-0_11
Michell, 2016, Lipoprotein carriers of microRNAs, Biochim. Biophys. Acta, 10.1016/j.bbalip.2016.01.011
Aryal, 2014, Noncoding RNAs and atherosclerosis, Curr. Atheroscler. Rep., 16, 407, 10.1007/s11883-014-0407-3
Vickers, 2011, MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins, Nat. Cell Biol., 13, 423, 10.1038/ncb2210
Phillips, 2014, Molecular mechanisms of cellular cholesterol efflux, J. Biol. Chem., 289, 24020, 10.1074/jbc.R114.583658
Oram, 2001, ABCA1. The gatekeeper for eliminating excess tissue cholesterol, J. Lipid Res., 42, 1173, 10.1016/S0022-2275(20)31566-2
Lee-Rueckert, 2013, The role of the gut in reverse cholesterol transport — focus on the enterocyte, Prog. Lipid Res., 52, 317, 10.1016/j.plipres.2013.04.003
Rader, 2009, The role of reverse cholesterol transport in animals and humans and relationship to atherosclerosis, J. Lipid Res., 50, S189, 10.1194/jlr.R800088-JLR200
Wang, 2007, Macrophage ABCA1 and ABCG1, but not SR-BI, promote macrophage reverse cholesterol transport in vivo, J. Clin. Invest., 117, 2216, 10.1172/JCI32057
Larrede, 2009, Stimulation of cholesterol efflux by LXR agonists in cholesterol-loaded human macrophages is ABCA1-dependent but ABCG1-independent, Arterioscler. Thromb. Vasc. Biol., 29, 1930, 10.1161/ATVBAHA.109.194548
Tarling, 2011, ATP binding cassette transporter G1 (ABCG1) is an intracellular sterol transporter, Proc. Natl. Acad. Sci. U. S. A., 108, 19719, 10.1073/pnas.1113021108
Wang, 2004, ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to high-density lipoproteins, Proc. Natl. Acad. Sci. U. S. A., 101, 9774, 10.1073/pnas.0403506101
Liu, 2012, Regulation of ABCA1 functions by signaling pathways, Biochim. Biophys. Acta, 1821, 522, 10.1016/j.bbalip.2011.08.015
Osono, 1996, Centripetal cholesterol flux from extrahepatic organs to the liver is independent of the concentration of high density lipoprotein-cholesterol in plasma, Proc. Natl. Acad. Sci. U. S. A., 93, 4114, 10.1073/pnas.93.9.4114
Kovanen, 1975, Regulation of cholesterol synthesis and storage in fat cells, J. Lipid Res., 16, 211, 10.1016/S0022-2275(20)36728-6
Weibel, 2011, Novel in vivo method for measuring cholesterol mass flux in peripheral macrophages, Arterioscler. Thromb. Vasc. Biol., 31, 2865, 10.1161/ATVBAHA.111.236406
Sontag, 2015, Alginic acid cell entrapment: a novel method for measuring in vivo macrophage cholesterol homeostasis, J. Lipid Res., 56, 470, 10.1194/jlr.D052985
Schwartz, 2004, Lipoprotein cholesteryl ester production, transfer, and output in vivo in humans, J. Lipid Res., 45, 1594, 10.1194/jlr.M300511-JLR200
Turner, 2012, Measurement of reverse cholesterol transport pathways in humans: in vivo rates of free cholesterol efflux, esterification, and excretion, J. Am. Heart Assoc., 1, e001826, 10.1161/JAHA.112.001826
Raitakari, 2013, Computationally estimated apolipoproteins B and A1 in predicting cardiovascular risk, Atherosclerosis, 226, 245, 10.1016/j.atherosclerosis.2012.10.049
Rubenfire, 2013, HDL cholesterol and cardiovascular outcomes: what is the evidence?, Curr. Cardiol. Rep., 15, 349, 10.1007/s11886-013-0349-3
Rader, 2012, The not-so-simple HDL story: is it time to revise the HDL cholesterol hypothesis?, Nat. Med., 18, 1344, 10.1038/nm.2937
Kingwell, 2014, HDL-targeted therapies: progress, failures and future, Nat. Rev. Drug Discov., 13, 445, 10.1038/nrd4279
Castro, 1988, Early incorporation of cell-derived cholesterol into pre-β-migrating high density lipoprotein, Biochemistry, 27, 25, 10.1021/bi00401a005
de la Llera-Moya, 2010, The ability to promote efflux via ABCA1 determines the capacity of serum specimens with similar high-density lipoprotein cholesterol to remove cholesterol from macrophages, Arterioscler. Thromb. Vasc. Biol., 30, 796, 10.1161/ATVBAHA.109.199158
Miller, 2013, Lipoprotein remodeling generates lipid-poor apolipoprotein A-I particles in human interstitial fluid, Am. J. Physiol. Endocrinol. Metab., 304, E321, 10.1152/ajpendo.00324.2012
Nanjee, 2001, Composition and ultrastructure of size subclasses of normal human peripheral lymph lipoproteins: quantification of cholesterol uptake by HDL in tissue fluids, J. Lipid Res., 42, 639, 10.1016/S0022-2275(20)31173-1
Smith, 1990, Transport, interactions and retention of plasma proteins in the intima: the barrier function of the internal elastic lamina, Eur. Heart J., 11, 72, 10.1093/eurheartj/11.suppl_E.72
Lindstedt, 1996, Chymase in exocytosed rat mast cell granules effectively proteolyzes apolipoprotein AI-containing lipoproteins, so reducing the cholesterol efflux-inducing ability of serum and aortic intimal fluid, J. Clin. Invest., 97, 2174, 10.1172/JCI118658
DiDonato, 2013, Function and distribution of apolipoprotein A1 in the artery wall are markedly distinct from those in plasma, Circulation, 128, 1644, 10.1161/CIRCULATIONAHA.113.002624
Huang, 2014, An abundant dysfunctional apolipoprotein A1 in human atheroma, Nat. Med., 20, 193, 10.1038/nm.3459
Stapleton, 2010, Hypercholesterolemia and microvascular dysfunction: interventional strategies, J. Inflamm. (Lond.), 7, 54, 10.1186/1476-9255-7-54
Kareinen, 2014, Enhanced vascular permeability facilitates entry of plasma HDL and promotes macrophage-reverse cholesterol transport from skin in mice, J. Lipid Res., 56, 241, 10.1194/jlr.M050948
Waldo, 2008, Heterogeneity of human macrophages in culture and in atherosclerotic plaques, Am. J. Pathol., 172, 1112, 10.2353/ajpath.2008.070513
Sankaranarayanan, 2013, Serum albumin acts as a shuttle to enhance cholesterol efflux from cells, J. Lipid Res., 54, 671, 10.1194/jlr.M031336
Hoang, 2012, Mechanism of cholesterol efflux in humans after infusion of reconstituted high-density lipoprotein, Eur. Heart J., 33, 657, 10.1093/eurheartj/ehr103
Khera, 2011, Cholesterol efflux capacity, high-density lipoprotein function, and atherosclerosis, N. Engl. J. Med., 364, 127, 10.1056/NEJMoa1001689
Li, 2013, Paradoxical association of enhanced cholesterol efflux with increased incident cardiovascular risks, Arterioscler. Thromb. Vasc. Biol., 33, 1696, 10.1161/ATVBAHA.113.301373
Rohatgi, 2014, HDL cholesterol efflux capacity and incident cardiovascular events, N. Engl. J. Med., 371, 2383, 10.1056/NEJMoa1409065
Saleheen, 2015, Association of HDL cholesterol efflux capacity with incident coronary heart disease events: a prospective case–control study, Lancet Diabetes Endocrinol., 3, 507, 10.1016/S2213-8587(15)00126-6
Lee-Rueckert, 2011, Extracellular modification of HDL and the evolving concept on the in-vivo proteolytic inactivation of prebeta-HDL as cholesterol acceptors, Curr. Opin. Lipidol., 22, 394, 10.1097/MOL.0b013e32834a3d24
Rosenson, 2013, Translation of high-density lipoprotein function into clinical practice: current prospects and future challenges, Circulation, 128, 1256, 10.1161/CIRCULATIONAHA.113.000962
Amigo, 2016, Lipoprotein hydrophobic core lipids are partially extruded to surface in smaller HDL:“herniated” HDL, a common feature in diabetes, Sci. Rep., 6, 19249, 10.1038/srep19249
Birner-Gruenberger, 2014, Understanding high-density lipoprotein function in disease: recent advances in proteomics unravel the complexity of its composition and biology, Prog. Lipid Res., 56, 36, 10.1016/j.plipres.2014.07.003
Rached, 2014, Defective functionality of HDL particles in familial apolipoprotein A-I deficiency: relevance of alterations in HDL lipidome and proteome, J. Lipid Res., 55, 2509, 10.1194/jlr.M051631
Agarwala, 2015, High-density lipoprotein (HDL) phospholipid content and cholesterol efflux capacity are reduced in patients with very high HDL cholesterol and coronary disease, Arterioscler. Thromb. Vasc. Biol., 35, 1515, 10.1161/ATVBAHA.115.305504
Fielding, 2007, Reverse cholesterol transport — new roles for prebeta1-HDL and lecithin:cholesterol acyltransferase, 143
Du, 2015, HDL particle size is a critical determinant of ABCA1-mediated macrophage cellular cholesterol export, Circ. Res., 116, 1133, 10.1161/CIRCRESAHA.116.305485
Guey, 2011, Relation of increased prebeta-1 high-density lipoprotein levels to risk of coronary heart disease, Am. J. Cardiol., 108, 360, 10.1016/j.amjcard.2011.03.054
Albrecht, 2004, ABCA1 expression in carotid atherosclerotic plaques, Stroke, 35, 2801, 10.1161/01.STR.0000147036.07307.93
Forcheron, 2005, Genes of cholesterol metabolism in human atheroma: overexpression of perilipin and genes promoting cholesterol storage and repression of ABCA1 expression, Arterioscler. Thromb. Vasc. Biol., 25, 1711, 10.1161/01.ATV.0000174123.19103.52
Singaraja, 2006, Specific mutations in ABCA1 have discrete effects on ABCA1 function and lipid phenotypes both in vivo and in vitro, Circ. Res., 99, 389, 10.1161/01.RES.0000237920.70451.ad
Schou, 2012, Genetic variation in ABCG1 and risk of myocardial infarction and ischemic heart disease, Arterioscler. Thromb. Vasc. Biol., 32, 506, 10.1161/ATVBAHA.111.234872
Mills, 1971, The distribution and composition of serum lipoproteins in eighteen animals, Comp. Biochem. Physiol. B, 40, 489, 10.1016/0305-0491(71)90234-3
Ha, 1982, Differences in plasma cholesteryl ester transfer activity in sixteen vertebrate species, Comp. Biochem. Physiol. B, 71, 265, 10.1016/0305-0491(82)90252-8
Veniant, 1998, Lipoprotein clearance mechanisms in LDL receptor-deficient “apo-B48-only” and “apo-B100-only” mice, J. Clin. Invest., 102, 1559, 10.1172/JCI4164
de Silva, 1994, Identification of apolipoprotein B-100 low density lipoproteins, apolipoprotein B-48 remnants, and apolipoprotein E-rich high density lipoproteins in the mouse, J. Lipid Res., 35, 1297, 10.1016/S0022-2275(20)39973-9
Brouillette, 1995, Structural models of human apolipoprotein A-I, Biochim. Biophys. Acta, 1256, 103, 10.1016/0005-2760(95)00018-8
Vedhachalam, 2010, Influence of apolipoprotein (Apo) A-I structure on nascent high density lipoprotein (HDL) particle size distribution, J. Biol. Chem., 285, 31965, 10.1074/jbc.M110.126292
Lyssenko, 2012, Influence of C-terminal alpha-helix hydrophobicity and aromatic amino acid content on apolipoprotein A-I functionality, Biochim. Biophys. Acta, 1821, 456, 10.1016/j.bbalip.2011.07.020
Rakhshandehroo, 2010, Peroxisome proliferator-activated receptor alpha target genes, PPAR Res., 2010, 10.1155/2010/612089
Reschly, 2002, Apolipoprotein A-I alpha-helices 7 and 8 modulate high density lipoprotein subclass distribution, J. Biol. Chem., 277, 9645, 10.1074/jbc.M107883200
Blanco-Vaca, 2001, Role of apoA-II in lipid metabolism and atherosclerosis: advances in the study of an enigmatic protein, J. Lipid Res., 42, 1727, 10.1016/S0022-2275(20)31499-1
Maiga, 2014, Apolipoprotein A-II is a key regulatory factor of HDL metabolism as appears from studies with transgenic animals and clinical outcomes, Biochimie, 96, 56, 10.1016/j.biochi.2013.08.027
Escola-Gil, 2007, Apolipoprotein A-II, 25
McGillicuddy, 2009, Inflammation impairs reverse cholesterol transport in vivo, Circulation, 119, 1135, 10.1161/CIRCULATIONAHA.108.810721
Eklund, 2012, Immune functions of serum amyloid A, Crit. Rev. Immunol., 32, 335, 10.1615/CritRevImmunol.v32.i4.40
King, 2011, Serum amyloid A in atherosclerosis, Curr. Opin. Lipidol., 22, 302, 10.1097/MOL.0b013e3283488c39
Lu, 2014, Structural mechanism of serum amyloid A-mediated inflammatory amyloidosis, Proc. Natl. Acad. Sci. U. S. A., 111, 5189, 10.1073/pnas.1322357111
Coetzee, 1986, Serum amyloid A-containing human high density lipoprotein 3. Density, size, and apolipoprotein composition, J. Biol. Chem., 261, 9644, 10.1016/S0021-9258(18)67562-3
de Beer, 2010, Impact of serum amyloid A on high density lipoprotein composition and levels, J. Lipid Res., 51, 3117, 10.1194/jlr.M005413
Getz, 2006, Diet and murine atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 26, 242, 10.1161/01.ATV.0000201071.49029.17
Svenson, 2007, Multiple trait measurements in 43 inbred mouse strains capture the phenotypic diversity characteristic of human populations, J. Appl. Physiol., 102, 2369, 10.1152/japplphysiol.01077.2006
Paigen, 1985, Variation in susceptibility to atherosclerosis among inbred strains of mice, Atherosclerosis, 57, 65, 10.1016/0021-9150(85)90138-8
Rader, 2000, Genetic susceptibility to atherosclerosis: insights from mice, Circ. Res., 86, 1013, 10.1161/01.RES.86.10.1013
Ando, 2005, Regulation of cholesterol 7alpha-hydroxylase mRNA expression in C57BL/6 mice fed an atherogenic diet, Atherosclerosis, 178, 265, 10.1016/j.atherosclerosis.2004.09.016
Vergnes, 2003, Cholesterol and cholate components of an atherogenic diet induce distinct stages of hepatic inflammatory gene expression, J. Biol. Chem., 278, 42774, 10.1074/jbc.M306022200
Jawien, 2012, The role of an experimental model of atherosclerosis: apoE-knockout mice in developing new drugs against atherogenesis, Curr. Pharm. Biotechnol., 13, 2435, 10.2174/1389201011208062435
Feil, 2014, Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis, Circ. Res., 115, 662, 10.1161/CIRCRESAHA.115.304634
Allahverdian, 2014, Contribution of intimal smooth muscle cells to cholesterol accumulation and macrophage-like cells in human atherosclerosis, Circulation, 129, 1551, 10.1161/CIRCULATIONAHA.113.005015
Griffin, 2012, Why don't macrophages leave atherosclerotic lesions?, Circ. Res., 110, 1273, 10.1161/CIRCRESAHA.112.268839
Moore, 2013, Macrophages in atherosclerosis: a dynamic balance, Nat. Rev. Immunol., 13, 709, 10.1038/nri3520
Sontag, 2014, Apolipoprotein a-I protection against atherosclerosis is dependent on genetic background, Arterioscler. Thromb. Vasc. Biol., 34, 262, 10.1161/ATVBAHA.113.302831
Getz, 2012, Animal models of atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 32, 1104, 10.1161/ATVBAHA.111.237693
Kapourchali, 2014, Animal models of atherosclerosis, World J. Clin. Cases, 2, 126, 10.12998/wjcc.v2.i5.126
Hewing, 2012, Preclinical mouse models and methods for the discovery of the causes and treatments of atherosclerosis, Expert Opin. Drug Discovery, 7, 207, 10.1517/17460441.2012.660143
Stylianou, 2012, Genetic basis of atherosclerosis: insights from mice and humans, Circ. Res., 110, 337, 10.1161/CIRCRESAHA.110.230854
Wouters, 2005, Understanding hyperlipidemia and atherosclerosis: lessons from genetically modified apoe and ldlr mice, Clin. Chem. Lab. Med., 43, 470, 10.1515/CCLM.2005.085
Escola-Gil, 1999, Pitfalls of direct HDL-cholesterol measurements in mouse models of hyperlipidemia and atherosclerosis, Clin. Chem., 45, 1567, 10.1093/clinchem/45.9.1567
Plump, 1992, Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells, Cell, 71, 343, 10.1016/0092-8674(92)90362-G
Huang, 2010, Mechanisms linking apolipoprotein E isoforms with cardiovascular and neurological diseases, Curr. Opin. Lipidol., 21, 337, 10.1097/MOL.0b013e32833af368
van den Maagdenberg, 1993, Transgenic mice carrying the apolipoprotein E3-leiden gene exhibit hyperlipoproteinemia, J. Biol. Chem., 268, 10540, 10.1016/S0021-9258(18)82232-3
Davignon, 1999, Apolipoprotein E and atherosclerosis: insight from animal and human studies, Clin. Chim. Acta, 286, 115, 10.1016/S0009-8981(99)00097-2
Knouff, 1999, Apo E structure determines VLDL clearance and atherosclerosis risk in mice, J. Clin. Invest., 103, 1579, 10.1172/JCI6172
Veniant, 2008, Lipoprotein size and susceptibility to atherosclerosis—insights from genetically modified mouse models, Curr. Drug Targets, 9, 174, 10.2174/138945008783755629
Ishibashi, 1993, Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery, J. Clin. Invest., 92, 883, 10.1172/JCI116663
Davidson, 1995, Apolipoprotein B messenger RNA editing: insights into the molecular regulation of post-transcriptional cytidine deamination, Curr. Opin. Lipidol., 6, 70, 10.1097/00041433-199504000-00002
Oka, 1997, Tissue-specific inhibition of apolipoprotein B mRNA editing in the liver by adenovirus-mediated transfer of a dominant negative mutant APOBEC-1 leads to increased low density lipoprotein in mice, J. Biol. Chem., 272, 1456, 10.1074/jbc.272.3.1456
Beisiegel, 1989, The LDL-receptor-related protein, LRP, is an apolipoprotein E-binding protein, Nature, 341, 162, 10.1038/341162a0
Powell-Braxton, 1998, A mouse model of human familial hypercholesterolemia: markedly elevated low density lipoprotein cholesterol levels and severe atherosclerosis on a low-fat chow diet, Nat. Med., 4, 934, 10.1038/nm0898-934
Kassim, 2010, Gene therapy in a humanized mouse model of familial hypercholesterolemia leads to marked regression of atherosclerosis, PLoS One, 5, e13424, 10.1371/journal.pone.0013424
Schultz, 1993, Protein composition determines the anti-atherogenic properties of HDL in transgenic mice, Nature, 365, 762, 10.1038/365762a0
Paszty, 1994, Apolipoprotein AI transgene corrects apolipoprotein E deficiency-induced atherosclerosis in mice, J. Clin. Invest., 94, 899, 10.1172/JCI117412
Moore, 2005, Increased atherosclerosis in mice lacking apolipoprotein A-I attributable to both impaired reverse cholesterol transport and increased inflammation, Circ. Res., 97, 763, 10.1161/01.RES.0000185320.82962.F7
Plump, 1997, ApoA-I knockout mice: characterization of HDL metabolism in homozygotes and identification of a post-RNA mechanism of apoA-I up-regulation in heterozygotes, J. Lipid Res., 38, 1033, 10.1016/S0022-2275(20)37227-8
Fitzgerald, 2004, ABCA1 and amphipathic apolipoproteins form high-affinity molecular complexes required for cholesterol efflux, J. Lipid Res., 45, 287, 10.1194/jlr.M300355-JLR200
Lee, 2002, Mast cell chymase degrades apoE and apoA-II in apoA-I-knockout mouse plasma and reduces its ability to promote cellular cholesterol efflux, Arterioscler. Thromb. Vasc. Biol., 22, 1475, 10.1161/01.ATV.0000029782.84357.68
Plump, 1994, Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse, Proc. Natl. Acad. Sci. U. S. A., 91, 9607, 10.1073/pnas.91.20.9607
Tangirala, 1999, Regression of atherosclerosis induced by liver-directed gene transfer of apolipoprotein A-I in mice, Circulation, 100, 1816, 10.1161/01.CIR.100.17.1816
Zhang, 2003, Overexpression of apolipoprotein A-I promotes reverse transport of cholesterol from macrophages to feces in vivo, Circulation, 108, 661, 10.1161/01.CIR.0000086981.09834.E0
Lee-Rueckert, 2011, Mast cell activation in vivo impairs the macrophage reverse cholesterol transport pathway in the mouse, Arterioscler. Thromb. Vasc. Biol., 31, 520, 10.1161/ATVBAHA.110.221069
Julve, 2010, Human apolipoprotein A-II determines plasma triglycerides by regulating lipoprotein lipase activity and high-density lipoprotein proteome, Arterioscler. Thromb. Vasc. Biol., 30, 232, 10.1161/ATVBAHA.109.198226
Weng, 1996, Dramatically decreased high density lipoprotein cholesterol, increased remnant clearance, and insulin hypersensitivity in apolipoprotein A-II knockout mice suggest a complex role for apolipoprotein A-II in atherosclerosis susceptibility, Proc. Natl. Acad. Sci. U. S. A., 93, 14788, 10.1073/pnas.93.25.14788
Deeb, 1990, A splice-junction mutation responsible for familial apolipoprotein A-II deficiency, Am. J. Hum. Genet., 46, 822
Pownall, 2013, Setting the course for apoAII: a port in sight?, Clin. Lipidol., 8, 551, 10.2217/clp.13.59
Hoekstra, 2015, Mouse models of disturbed HDL metabolism, Handb. Exp. Pharmacol., 224, 301, 10.1007/978-3-319-09665-0_9
Van Eck, 2006, Macrophage ATP-binding cassette transporter A1 overexpression inhibits atherosclerotic lesion progression in low-density lipoprotein receptor knockout mice, Arterioscler. Thromb. Vasc. Biol., 26, 929, 10.1161/01.ATV.0000208364.22732.16
Lammers, 2011, Augmented atherogenesis in LDL receptor deficient mice lacking both macrophage ABCA1 and ApoE, PLoS One, 6, e26095, 10.1371/journal.pone.0026095
Joyce, 2002, The ATP binding cassette transporter A1 (ABCA1) modulates the development of aortic atherosclerosis in C57BL/6 and apoE-knockout mice, Proc. Natl. Acad. Sci. U. S. A., 99, 407, 10.1073/pnas.012587699
Haghpassand, 2001, Monocyte/macrophage expression of ABCA1 has minimal contribution to plasma HDL levels, J. Clin. Invest., 108, 1315, 10.1172/JCI200112810
Aiello, 2002, Increased atherosclerosis in hyperlipidemic mice with inactivation of ABCA1 in macrophages, Arterioscler. Thromb. Vasc. Biol., 22, 630, 10.1161/01.ATV.0000014804.35824.DA
Aiello, 2003, ABCA1-deficient mice: insights into the role of monocyte lipid efflux in HDL formation and inflammation, Arterioscler. Thromb. Vasc. Biol., 23, 972, 10.1161/01.ATV.0000054661.21499.FB
Schaefer, 2010, Marked HDL deficiency and premature coronary heart disease, Curr. Opin. Lipidol., 21, 289, 10.1097/MOL.0b013e32833c1ef6
Voyiaziakis, 1998, ApoA-I deficiency causes both hypertriglyceridemia and increased atherosclerosis in human apoB transgenic mice, J. Lipid Res., 39, 313, 10.1016/S0022-2275(20)33893-1
Lee, 2013, HDL deficiency due to a new insertion mutation (ApoA-INashua) and review of the literature, J. Clin. Lipidol., 7, 169, 10.1016/j.jacl.2012.10.011
Adorni, 2007, The roles of different pathways in the release of cholesterol from macrophages, J. Lipid Res., 48, 2453, 10.1194/jlr.M700274-JLR200
Zhang, 2010, Adipocyte modulation of high-density lipoprotein cholesterol, Circulation, 121, 1347, 10.1161/CIRCULATIONAHA.109.897330
Khera, 2013, Cholesterol efflux capacity: full steam ahead or a bump in the road?, Arterioscler. Thromb. Vasc. Biol., 33, 1449, 10.1161/ATVBAHA.113.301519
Soro-Paavonen, 2007, Common ABCA1 variants, HDL levels, and cellular cholesterol efflux in subjects with familial low HDL, J. Lipid Res., 48, 1409, 10.1194/jlr.P600012-JLR200
Nakanishi, 2009, Serum, but not monocyte macrophage foam cells derived from low HDL-C subjects, displays reduced cholesterol efflux capacity, J. Lipid Res., 50, 183, 10.1194/jlr.M800196-JLR200
Weibel, 2014, Importance of evaluating cell cholesterol influx with efflux in determining the impact of human serum on cholesterol metabolism and atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 34, 17, 10.1161/ATVBAHA.113.302437
Escola-Gil, 2015, Quantification of in vitro macrophage cholesterol efflux and in vivo macrophage-specific reverse cholesterol transport, Methods Mol. Biol., 1339, 211, 10.1007/978-1-4939-2929-0_15
Mestas, 2004, Of mice and not men: differences between mouse and human immunology, J. Immunol., 172, 2731, 10.4049/jimmunol.172.5.2731
Santamarina-Fojo, 2000, Complete genomic sequence of the human ABCA1 gene: analysis of the human and mouse ATP-binding cassette A promoter, Proc. Natl. Acad. Sci. U. S. A., 97, 7987, 10.1073/pnas.97.14.7987
Ingersoll, 2010, Comparison of gene expression profiles between human and mouse monocyte subsets, Blood, 115, e10, 10.1182/blood-2009-07-235028
Kiss, 2005, Lipid efflux in human and mouse macrophagic cells: evidence for differential regulation of phospholipid and cholesterol efflux, J. Lipid Res., 46, 1877, 10.1194/jlr.M400482-JLR200
Zhang, 1996, Apolipoprotein E produced by human monocyte derived macrophages mediates cholesterol efflux that occurs in the absence of added cholesterol acceptors, J. Biol. Chem., 271, 28641, 10.1074/jbc.271.45.28641
Werb, 1983, Onset of apoprotein E secretion during differentiation of mouse bone marrow-derived mononuclear phagocytes, J. Cell Biol., 97, 1113, 10.1083/jcb.97.4.1113
Zannis, 2015, HDL biogenesis, remodeling, and catabolism, Handb. Exp. Pharmacol., 224, 53, 10.1007/978-3-319-09665-0_2
Borja, 2015, HDL-apolipoprotein A-I exchange is independently associated with cholesterol efflux capacity, J. Lipid Res., 56, 2002, 10.1194/jlr.M059865
Masson, 2009, The role of plasma lipid transfer proteins in lipoprotein metabolism and atherogenesis, J. Lipid Res., 50, S201, 10.1194/jlr.R800061-JLR200
Mendivil, 2016, Novel pathways of apolipoprotein A-I metabolism in high-density lipoprotein of different sizes in humans, Arterioscler. Thromb. Vasc. Biol., 36, 156, 10.1161/ATVBAHA.115.306138
Tanigawa, 2009, Lecithin: cholesterol acyltransferase expression has minimal effects on macrophage reverse cholesterol transport in vivo, Circulation, 120, 160, 10.1161/CIRCULATIONAHA.108.825109
Kunnen, 2012, Lecithin:cholesterol acyltransferase: old friend or foe in atherosclerosis?, J. Lipid Res., 53, 1783, 10.1194/jlr.R024513
Hoeg, 1996, Overexpression of lecithin:cholesterol acyltransferase in transgenic rabbits prevents diet-induced atherosclerosis, Proc. Natl. Acad. Sci. U. S. A., 93, 11448, 10.1073/pnas.93.21.11448
Chen, 2012, Small molecule activation of lecithin cholesterol acyltransferase modulates lipoprotein metabolism in mice and hamsters, Metabolism, 61, 470, 10.1016/j.metabol.2011.08.006
Sloop, 1987, Interstitial fluid lipoproteins, J. Lipid Res., 28, 225, 10.1016/S0022-2275(20)38701-0
Oorni, 2015, Acidification of the intimal fluid: the perfect storm for atherogenesis, J. Lipid Res., 56, 203, 10.1194/jlr.R050252
Hogarth, 2003, Genomic evidence for the absence of a functional cholesteryl ester transfer protein gene in mice and rats, Comp. Biochem. Physiol. B Biochem. Mol. Biol., 135, 219, 10.1016/S1096-4959(03)00046-0
Jiang, 1995, Regulation of murine plasma phospholipid transfer protein activity and mRNA levels by lipopolysaccharide and high cholesterol diet, J. Biol. Chem., 270, 17133, 10.1074/jbc.270.29.17133
Karkkainen, 2002, Isolation and partial characterization of the inactive and active forms of human plasma phospholipid transfer protein (PLTP), J. Biol. Chem., 277, 15413, 10.1074/jbc.M112247200
Tu, 2001, Functional analysis of the transcriptional activity of the mouse phospholipid transfer protein gene, Biochem. Biophys. Res. Commun., 287, 921, 10.1006/bbrc.2001.5687
Tu, 1999, DNA sequences responsible for reduced promoter activity of human phospholipid transfer protein by fibrate, Biochem. Biophys. Res. Commun., 264, 802, 10.1006/bbrc.1999.1597
Chehaibi, 2015, PPAR-beta/delta activation promotes phospholipid transfer protein expression, Biochem. Pharmacol., 94, 101, 10.1016/j.bcp.2015.01.016
Guyard-Dangremont, 1998, Phospholipid and cholesteryl ester transfer activities in plasma from 14 vertebrate species. relation to atherogenesis susceptibility, Comp. Biochem. Physiol. B Biochem. Mol. Biol., 120, 517, 10.1016/S0305-0491(98)10038-X
Robins, 2013, Plasma lipid transfer proteins and cardiovascular disease. The Framingham Heart Study, Atherosclerosis, 228, 230, 10.1016/j.atherosclerosis.2013.01.046
Montgomery, 2013, Metabolic biomarkers for predicting cardiovascular disease, Vasc. Health Risk Manag., 9, 37
Annema, 2011, Role of hepatic lipase and endothelial lipase in high-density lipoprotein-mediated reverse cholesterol transport, Curr. Atheroscler. Rep., 13, 257, 10.1007/s11883-011-0175-2
Maugeais, 2003, Dose-dependent acceleration of high-density lipoprotein catabolism by endothelial lipase, Circulation, 108, 2121, 10.1161/01.CIR.0000092889.24713.DC
Escola-Gil, 2013, Hepatic lipase- and endothelial lipase-deficiency in mice promotes macrophage-to-feces RCT and HDL antioxidant properties, Biochim. Biophys. Acta, 1831, 691, 10.1016/j.bbalip.2013.01.003
Busch, 1994, Human hepatic triglyceride lipase expression reduces high density lipoprotein and aortic cholesterol in cholesterol-fed transgenic mice, J. Biol. Chem., 269, 16376, 10.1016/S0021-9258(17)34018-8
Chatterjee, 2011, Hepatic lipase, high density lipoproteins, and hypertriglyceridemia, Am. J. Pathol., 178, 1429, 10.1016/j.ajpath.2010.12.050
Chang, 1991, Characterization of cDNA encoding the mouse hepatic triglyceride lipase and expression by in vitro translation, FEBS Lett., 289, 69, 10.1016/0014-5793(91)80910-U
Santamarina-Fojo, 2004, Hepatic lipase, lipoprotein metabolism, and atherogenesis, Arterioscler. Thromb. Vasc. Biol., 24, 1750, 10.1161/01.ATV.0000140818.00570.2d
Johannsen, 2009, Hepatic lipase, genetically elevated high-density lipoprotein, and risk of ischemic cardiovascular disease, J. Clin. Endocrinol. Metab., 94, 1264, 10.1210/jc.2008-1342
Choi, 2002, Endothelial lipase: a new lipase on the block, J. Lipid Res., 43, 1763, 10.1194/jlr.R200011-JLR200
Shimokawa, 2005, Increased expression of endothelial lipase in rat models of hypertension, Cardiovasc. Res., 66, 594, 10.1016/j.cardiores.2005.01.013
Yasuda, 2010, Update on the role of endothelial lipase in high-density lipoprotein metabolism, reverse cholesterol transport, and atherosclerosis, Circ. J., 74, 2263, 10.1253/circj.CJ-10-0934
Hirata, 1999, Cloning of a unique lipase from endothelial cells extends the lipase gene family, J. Biol. Chem., 274, 14170, 10.1074/jbc.274.20.14170
Bartels, 2007, Endothelial lipase is highly expressed in macrophages in advanced human atherosclerotic lesions, Atherosclerosis, 195, e42, 10.1016/j.atherosclerosis.2007.05.002
Emamian, 2015, The lipoprotein lipase S447X and cholesteryl ester transfer protein rs5882 polymorphisms and their relationship with lipid profile in human serum of obese individuals, Gene, 558, 195, 10.1016/j.gene.2014.12.070
Clee, 1997, Relationship between lipoprotein lipase and high density lipoprotein cholesterol in mice: modulation by cholesteryl ester transfer protein and dietary status, J. Lipid Res., 38, 2079, 10.1016/S0022-2275(20)37138-8
Kent, 2011, Scavenger receptor class B member 1 protein: hepatic regulation and its effects on lipids, reverse cholesterol transport, and atherosclerosis, Hepatol. Med., 3, 29
Martinez, 2003, Ectopic beta-chain of ATP synthase is an apolipoprotein A-I receptor in hepatic HDL endocytosis, Nature, 421, 75, 10.1038/nature01250
Silver, 2001, High density lipoprotein (HDL) particle uptake mediated by scavenger receptor class B type 1 results in selective sorting of HDL cholesterol from protein and polarized cholesterol secretion, J. Biol. Chem., 276, 25287, 10.1074/jbc.M101726200
Webb, 2002, Overexpression of SR-BI by adenoviral vector promotes clearance of apoA-I, but not apoB, in human apoB transgenic mice, J. Lipid Res., 43, 1421, 10.1194/jlr.M200026-JLR200
Zhang, 2005, Hepatic expression of scavenger receptor class B type I (SR-BI) is a positive regulator of macrophage reverse cholesterol transport in vivo, J. Clin. Invest., 115, 2870, 10.1172/JCI25327
Vergeer, 2011, Genetic variant of the scavenger receptor BI in humans, N. Engl. J. Med., 364, 136, 10.1056/NEJMoa0907687
Brunham, 2011, Novel mutations in scavenger receptor BI associated with high HDL cholesterol in humans, Clin. Genet., 79, 575, 10.1111/j.1399-0004.2011.01682.x
Zhang, 2002, P2Y(13): identification and characterization of a novel Galphai-coupled ADP receptor from human and mouse, J. Pharmacol. Exp. Ther., 301, 705, 10.1124/jpet.301.2.705
Fabre, 2010, P2Y13 receptor is critical for reverse cholesterol transport, Hepatology, 52, 1477, 10.1002/hep.23897
Lichtenstein, 2015, Increased atherosclerosis in P2Y13/apolipoprotein E double-knockout mice: contribution of P2Y13 to reverse cholesterol transport, Cardiovasc. Res., 106, 314, 10.1093/cvr/cvv109
Yu, 2002, Disruption of Abcg5 and Abcg8 in mice reveals their crucial role in biliary cholesterol secretion, Proc. Natl. Acad. Sci. U. S. A., 99, 16237, 10.1073/pnas.252582399
Song, 2015, Piperine prevents cholesterol gallstones formation in mice, Eur. J. Pharmacol., 751, 112, 10.1016/j.ejphar.2015.01.038
Stender, 2014, The ABCG5/8 cholesterol transporter and myocardial infarction versus gallstone disease, J. Am. Coll. Cardiol., 63, 2121, 10.1016/j.jacc.2013.12.055
Geuken, 2005, Hepatic expression of ABC transporters G5 and G8 does not correlate with biliary cholesterol secretion in liver transplant patients, Hepatology, 42, 1166, 10.1002/hep.20886
Jia, 2011, Niemann-pick C1-like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport, Annu. Rev. Physiol., 73, 239, 10.1146/annurev-physiol-012110-142233
Temel, 2007, Hepatic Niemann–Pick C1-like 1 regulates biliary cholesterol concentration and is a target of ezetimibe, J. Clin. Invest., 117, 1968, 10.1172/JCI30060
Kurano, 2012, Modulation of lipid metabolism with the overexpression of NPC1L1 in mouse liver, J. Lipid Res., 53, 2275, 10.1194/jlr.M026575
Temel, 2010, Biliary sterol secretion is not required for macrophage reverse cholesterol transport, Cell Metab., 12, 96, 10.1016/j.cmet.2010.05.011
Temel, 2012, Biliary and nonbiliary contributions to reverse cholesterol transport, Curr. Opin. Lipidol., 23, 85, 10.1097/MOL.0b013e3283508c21
van der Veen, 2009, Activation of the liver X receptor stimulates trans-intestinal excretion of plasma cholesterol, J. Biol. Chem., 284, 19211, 10.1074/jbc.M109.014860
Nijstad, 2011, Biliary sterol secretion is required for functional in vivo reverse cholesterol transport in mice, Gastroenterology, 140, 1043, 10.1053/j.gastro.2010.11.055
Xie, 2013, Ezetimibe inhibits hepatic Niemann–Pick C1-like 1 to facilitate macrophage reverse cholesterol transport in mice, Arterioscler. Thromb. Vasc. Biol., 33, 920, 10.1161/ATVBAHA.112.301187
Myant, 1977, Cholesterol 7 alpha-hydroxylase, J. Lipid Res., 18, 135, 10.1016/S0022-2275(20)41693-1
Tiemann, 2004, Cholesterol feeding of mice expressing cholesterol 7alpha-hydroxylase increases bile acid pool size despite decreased enzyme activity, Proc. Natl. Acad. Sci. U. S. A., 101, 1846, 10.1073/pnas.0308426100
Chen, 2002, Mice expressing the human CYP7A1 gene in the mouse CYP7A1 knock-out background lack induction of CYP7A1 expression by cholesterol feeding and have increased hypercholesterolemia when fed a high fat diet, J. Biol. Chem., 277, 42588, 10.1074/jbc.M205117200
Henkel, 2011, A chronic high-cholesterol diet paradoxically suppresses hepatic CYP7A1 expression in FVB/NJ mice, J. Lipid Res., 52, 289, 10.1194/jlr.M012781
Ratliff, 2006, Transgenic expression of CYP7A1 in LDL receptor-deficient mice blocks diet-induced hypercholesterolemia, J. Lipid Res., 47, 1513, 10.1194/jlr.M600120-JLR200
Pullinger, 2002, Human cholesterol 7alpha-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype, J. Clin. Invest., 110, 109, 10.1172/JCI0215387
Beigneux, 2002, Human CYP7A1 deficiency: progress and enigmas, J. Clin. Invest., 110, 29, 10.1172/JCI0216076
Chiang, 2009, Bile acids: regulation of synthesis, J. Lipid Res., 50, 1955, 10.1194/jlr.R900010-JLR200
Betters, 2010, NPC1L1 and cholesterol transport, FEBS Lett., 584, 2740, 10.1016/j.febslet.2010.03.030
Falany, 1997, Cloning, expression, and chromosomal localization of mouse liver bile acid CoA:amino acid N-acyltransferase, J. Lipid Res., 38, 1139, 10.1016/S0022-2275(20)37196-0
Chen, 2013, Bile salt export pump is dysregulated with altered farnesoid X receptor isoform expression in patients with hepatocellular carcinoma, Hepatology, 57, 1530, 10.1002/hep.26187
Cheng, 2007, Regulation of hepatic bile acid transporters Ntcp and Bsep expression, Biochem. Pharmacol., 74, 1665, 10.1016/j.bcp.2007.08.014
Rose, 2011, Molecular control of systemic bile acid homeostasis by the liver glucocorticoid receptor, Cell Metab., 14, 123, 10.1016/j.cmet.2011.04.010
Wang, 2007, Regulation of intestinal cholesterol absorption, Annu. Rev. Physiol., 69, 221, 10.1146/annurev.physiol.69.031905.160725
Wang, 2003, Measurement of intestinal cholesterol absorption by plasma and fecal dual-isotope ratio, mass balance, and lymph fistula methods in the mouse: an analysis of direct versus indirect methodologies, J. Lipid Res., 44, 1042, 10.1194/jlr.D200041-JLR200
Sudhop, 2002, Inhibition of intestinal cholesterol absorption by ezetimibe in humans, Circulation, 106, 1943, 10.1161/01.CIR.0000034044.95911.DC
Le May, 2013, Transintestinal cholesterol excretion is an active metabolic process modulated by PCSK9 and statin involving ABCB1, Arterioscler. Thromb. Vasc. Biol., 33, 1484, 10.1161/ATVBAHA.112.300263
Hawes, 2007, In vivo responsiveness to ezetimibe correlates with Niemann–Pick C1 like-1 (NPC1L1) binding affinity: comparison of multiple species NPC1L1 orthologs, Mol. Pharmacol., 71, 19, 10.1124/mol.106.027896
Silvennoinen, 2012, Acute psychological stress accelerates reverse cholesterol transport via corticosterone-dependent inhibition of intestinal cholesterol absorption, Circ. Res., 111, 1459, 10.1161/CIRCRESAHA.112.277962
Iwayanagi, 2011, Human NPC1L1 expression is positively regulated by PPARalpha, Pharm. Res., 28, 405, 10.1007/s11095-010-0294-4
Brunham, 2006, Intestinal ABCA1 directly contributes to HDL biogenesis in vivo, J. Clin. Invest., 116, 1052, 10.1172/JCI27352
Masson, 2010, Fatty acid- and cholesterol transporter protein expression along the human intestinal tract, PLoS One, 5, e10380, 10.1371/journal.pone.0010380
Field, 2008, Origins of intestinal ABCA1-mediated HDL-cholesterol, J. Lipid Res., 49, 2605, 10.1194/jlr.M800302-JLR200
Hazard, 2007, Sterolins ABCG5 and ABCG8: regulators of whole body dietary sterols, Pflugers Arch., 453, 745, 10.1007/s00424-005-0040-7
Escola-Gil, 2014, Sitosterolemia: diagnosis, investigation, and management, Curr. Atheroscler. Rep., 16, 424, 10.1007/s11883-014-0424-2
Gylling, 2014, Plant sterols and plant stanols in the management of dyslipidaemia and prevention of cardiovascular disease, Atherosclerosis, 232, 346, 10.1016/j.atherosclerosis.2013.11.043
Silvennoinen, 2015, Chronic intermittent psychological stress promotes macrophage reverse cholesterol transport by impairing bile acid absorption in mice, Phys. Rep., 3
Neimark, 2004, Bile acid-induced negative feedback regulation of the human ileal bile acid transporter, Hepatology, 40, 149, 10.1002/hep.20295
Thomas, 2006, Cholesterol dependent downregulation of mouse and human apical sodium dependent bile acid transporter (ASBT) gene expression: molecular mechanism and physiological consequences, Gut, 55, 1321, 10.1136/gut.2005.085555
Madrigal-Matute, 2013, MicroRNAs and atherosclerosis, Curr. Atheroscler. Rep., 15, 322, 10.1007/s11883-013-0322-z
Tabet, 2014, HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells, Nat. Commun., 5, 3292, 10.1038/ncomms4292
Wagner, 2013, Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs, Arterioscler. Thromb. Vasc. Biol., 33, 1392, 10.1161/ATVBAHA.112.300741
Briand, 2011, CETP inhibitor torcetrapib promotes reverse cholesterol transport in obese insulin-resistant CETP-ApoB100 transgenic mice, Clin. Transl. Sci., 4, 414, 10.1111/j.1752-8062.2011.00344.x
Tchoua, 2008, The effect of cholesteryl ester transfer protein overexpression and inhibition on reverse cholesterol transport, Cardiovasc. Res., 77, 732, 10.1093/cvr/cvm087
Barter, 2012, Cholesteryl ester transfer protein inhibition as a strategy to reduce cardiovascular risk, J. Lipid Res., 53, 1755, 10.1194/jlr.R024075
Bell, 2013, Antisense oligonucleotide inhibition of cholesteryl ester transfer protein enhances RCT in hyperlipidemic, CETP transgenic, LDLr−/− mice, J. Lipid Res., 54, 2647, 10.1194/jlr.M036509
Navab, 2010, Structure and function of HDL mimetics, Arterioscler. Thromb. Vasc. Biol., 30, 164, 10.1161/ATVBAHA.109.187518
Seok, 2013, Genomic responses in mouse models poorly mimic human inflammatory diseases, Proc. Natl. Acad. Sci. U. S. A., 110, 3507, 10.1073/pnas.1222878110
Koopmans, 2015, Considerations on pig models for appetite, metabolic syndrome and obese type 2 diabetes: from food intake to metabolic disease, Eur. J. Pharmacol., 759, 231, 10.1016/j.ejphar.2015.03.044
Acton, 1996, Identification of scavenger receptor SR-BI as a high density lipoprotein receptor, Science., 271, 518, 10.1126/science.271.5248.518
Zanoni, 2016, CHD Exome+ Consortium, CARDIoGRAM Exome Consortium and Global Lipids Genetics Consortium, Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease, Science, 351, 1166, 10.1126/science.aad3517