The acyclic edge coloring of planar graphs without a 3-cycle adjacent to a 4-cycle
Tài liệu tham khảo
Alon, 1991, Acyclic coloring of graphs, Random Structures Algorithms, 2, 277, 10.1002/rsa.3240020303
Alon, 2001, Acyclic edge colorings of graphs, J. Graph Theory, 37, 157, 10.1002/jgt.1010
Basavaraju, 2008, Acyclic edge coloring of subcubic graphs, Discrete Math., 308, 6650, 10.1016/j.disc.2007.12.036
Basavaraju, 2009, Acyclic edge coloring of graphs with maximum degree 4, J. Graph Theory, 61, 192, 10.1002/jgt.20376
Basavaraju, 2011, Acyclic edge-coloring of planar graphs, SIAM J. Discrete Math., 25, 463, 10.1137/090776676
L. Esperet, A. Parreau, Acyclic edge-coloring using entropy compression, http://arxiv.org/abs/1206.1535v1.
Fiamčik, 1978, The acyclic chromatic class of a graph, Math. Slovaca, 28, 139
Fiedorowicz, 2012, Acyclic edge colouring of plane graphs, Discrete Appl. Math., 160, 1513, 10.1016/j.dam.2012.02.018
M. Molloy, B. Reed, Further algorithmic aspects of Lovász local lemma, in: Proceedings of the 30th Annual ACM Symposium on Theory of Computing, 1998, pp. 524–529.
Ndreca, 2012, Improved bounds on coloring of graphs, European J. Combin., 33, 592, 10.1016/j.ejc.2011.12.002
Shu, 2013, Acyclic chromatic indices of planar graphs with girth at least four, J. Graph Theory, 73, 386, 10.1002/jgt.21683
Shu, 2012, Acyclic edge coloring of planar graphs without 5-cycles, Discrete Appl. Math., 160, 1211, 10.1016/j.dam.2011.12.016
Skulrattanakulchai, 2004, Acyclic colorings of subcubic graphs, Inform. Process. Lett., 92, 161, 10.1016/j.ipl.2004.08.002
Vizing, 1964, On an estimate of the chromatic index of a p-graph, Diskret. Anal., 3, 25
Wang, 2012, Acyclic edge coloring of sparse graphs, Discrete Math., 312, 3561, 10.1016/j.disc.2012.08.012
Wang, 2013, A new upper bound on the acyclic chromatic indices of planar graphs, European J. Combin., 34, 338, 10.1016/j.ejc.2012.07.008
Wang, 2013, Acyclic edge coloring of planar graphs without 4-cycles, J. Comb. Optim., 25, 562, 10.1007/s10878-012-9474-y
W. Wang, Q. Shu, Y. Wang, Every 4-regular graph is acyclically edge-6-colorable, http://arxiv.org/abs/1209.2471v1.