Silica‐Gelatin Hybrids with Tailorable Degradation and Mechanical Properties for Tissue Regeneration

Advanced Functional Materials - Tập 20 Số 22 - Trang 3835-3845 - 2010
Oliver Mahony1,2,3, Olga Tsigkou1, Claudia Ionescu4, Caterina Minelli1, Lowell Ling1, Ruth Hanly5, Mark E. Smith4, Molly M. Stevens1, Julian R. Jones5,2,3
1Department of Materials and Institute of Bioengineering, Imperial College London, SW7 2AZ (UK)
2Julian R. Jones, Department of Materials, Imperial College London, SW7 2AZ (UK)
3Oliver Mahony, Department of Materials and Institute of Bioengineering, Imperial College London, SW7 2AZ (UK).
4Department of Physics, University of Warwick, Coventry CV4 7AL, UK
5Department of Materials, Imperial College, London SW7 2AZ, UK

Tóm tắt

AbstractNature has evolved mechanisms to create a diversity of specialized materials through nanoscale organization. Inspired by nature, hybrid materials are designed with highly tailorable properties, which are achieved through careful control of their nanoscale interactions. These novel materials, based on a silica‐gelatin hybrid system, have the potential to serve as a platform technology for human tissue regeneration. Covalent interactions between the inorganic and organic constituents of the hybrid are essential to enable the precise control of mechanical and dissolution properties. Furthermore, hybrid scaffold porosity is found to highly influence mechanical properties, to the extent where scaffolds of particular strength could be specified based on their porosity. The hybrids also demonstrate a non‐cytotoxic effect when mesenchymal stem cells are cultured on the material. Cytoskeletal proteins of the cells are imaged using actin and vimentin staining. It is envisaged these hybrid materials will find a diverse application in both hard and soft tissue regenerating scaffolds.

Từ khóa


Tài liệu tham khảo

10.1007/s00253-004-1580-z

10.1126/science.1106587

10.1038/nbt1055

10.1038/nmat2441

10.1016/j.biomaterials.2004.04.004

10.1002/jbm.820070304

10.1126/science.6093253

10.1126/science.1067404

10.1016/j.spinee.2006.07.017

10.1007/s11095-007-9508-9

10.1016/j.addr.2008.03.012

10.1016/j.actbio.2008.06.011

10.1016/j.biomaterials.2005.11.025

10.3139/146.101519

10.1016/S0142-9612(03)00037-1

10.1016/S0079-6700(02)00019-9

10.1002/adma.19930050603

10.1016/S0167-577X(03)00237-4

10.1016/j.memsci.2006.04.015

10.1016/j.chroma.2006.07.009

10.1039/b401393j

10.1002/bies.20636

10.1016/0142-9612(95)93258-F

10.1016/j.colsurfb.2004.02.008

10.1016/j.colsurfb.2006.11.008

10.1016/j.matchemphys.2007.02.068

10.1023/A:1011226104173

10.1016/S0142-9612(02)00226-0

10.1021/cr00099a003

10.1039/b814292k

10.1023/A:1015299926438

10.1002/adem.200700219

10.1126/science.1069210

10.1002/jbm.820240607

10.1002/jbm.1250

10.1023/A:1025988301542

10.1002/jbm.820060505

10.1016/j.biomaterials.2005.07.017

10.1016/j.jbiomech.2004.04.036

10.1016/j.mser.2007.08.001

10.1016/j.jbiomech.2008.08.015

10.1007/978-1-4757-2257-4

10.1016/S0021-9290(02)00052-0

10.1161/01.RES.37.4.509

Gibson L. J., 1999, Cellular solids: structure and properties 2nd ed., 175

10.1126/science.996549

10.1126/science.284.5411.143

10.1016/j.cell.2005.10.041

10.1038/nm755

10.1016/0092-8674(93)90612-T

10.1016/j.cell.2006.06.044