Toxicity and accumulation of Copper oxide (CuO) nanoparticles in different life stages of Artemia salina
Tài liệu tham khảo
Abdel-Khalek, 2015, Comparative toxicity of copper oxide bulk and nano particles in Nile Tilapia; Oreochromis niloticus: biochemical and oxidative stress, J. Basic Appl. Zool., 72, 43, 10.1016/j.jobaz.2015.04.001
Arulvasu, 2014, Toxicity effect of silver nanoparticles in brine shrimp Artemia, Sci. World J., 2014, 10.1155/2014/256919
Ates, 2013, Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: assessment of nanoparticle aggregation, accumulation, and toxicity, Environ. Monit. Assess., 185, 3339, 10.1007/s10661-012-2794-7
Ates, 2013, Comparative evaluation of impact of Zn and ZnO nanoparticles on brine shrimp (Artemia salina) larvae: effects of particle size and solubility on toxicity, Environ. Sci.: Process. Impacts, 15, 225
Ates, 2015, Accumulation and toxicity of CuO and ZnO nanoparticles through waterborne and dietary exposure of goldfish (Carassius auratus), Environ. Toxicol., 30, 119, 10.1002/tox.22002
Ates, 2015, Evaluation of alpha and gamma aluminum oxide nanoparticle accumulation, toxicity, and depuration in Artemia salina larvae, Environ. Toxicol., 30, 109, 10.1002/tox.21917
Ates, 2016, Toxicity of engineered nickel oxide and cobalt oxide nanoparticles to artemia salina in seawater, Water Air Soil Pollut., 227, 1, 10.1007/s11270-016-2771-9
Badawy, 2010, Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions, Environ. Sci. Technol., 44, 1260, 10.1021/es902240k
Bai, 2010, Toxicity of zinc oxide nanoparticles to zebrafish embryo: a physicochemical study of toxicity mechanism, J. Nanopart. Res., 12, 1645, 10.1007/s11051-009-9740-9
Beattie, 2003, Comparative effects and metabolism of two microcystins and nodularin in the brine shrimp Artemia salina, Aquat. Toxicol., 62, 219, 10.1016/S0166-445X(02)00091-7
Bebianno, 2004, Biomarkers in Ruditapes decussatus: a potential bioindicator species, Biomarkers, 9, 305, 10.1080/13547500400017820
Bergami, 2016, Nano-sized polystyrene affects feeding, behavior and physiology of brine shrimp Artemia franciscana larvae, Ecotoxicol. Environ. Saf., 123, 18, 10.1016/j.ecoenv.2015.09.021
Blinova, 2010, Ecotoxicity of nanoparticles of CuO and ZnO in natural water, Environ. Pollut., 158, 41, 10.1016/j.envpol.2009.08.017
Bradford, 1976, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 72, 248, 10.1016/0003-2697(76)90527-3
Browne, 1980, Competition experiments between parthenogenetic and sexual strains of the brine shrimp, Artemia salina, Ecology, 61, 471, 10.2307/1937409
Buffet, 2011, Behavioural and biochemical responses of two marine invertebrates Scrobicularia plana and Hediste diversicolor to copper oxide nanoparticles, Chemosphere, 84, 166, 10.1016/j.chemosphere.2011.02.003
Clegg, 1995, Nuclear-cytoplasmic translocations of protein p26 during aerobic-anoxic transitions in embryos of Artemia franciscana, Exp. Cell Res., 219, 1, 10.1006/excr.1995.1197
Conway, 2015, Aggregation, dissolution, and transformation of copper nanoparticles in natural waters, Environ. Sci.Technol., 49, 2749, 10.1021/es504918q
Cornejo-Garrido, 2011, Oxidative stress, cytoxicity, and cell mortality induced by nano-sized lead in aqueous suspensions, Chemosphere, 84, 1329, 10.1016/j.chemosphere.2011.05.018
Corsi, 2014, Common strategies and technologies for the ecosafety assessment and design of nanomaterials entering the marine environment, ACS Nano, 8, 9694, 10.1021/nn504684k
Dai, 2015, Influence of copper oxide nanoparticle form and shape on toxicity and bioaccumulation in the deposit feeder, Capitella teleta, Mar. Environ. Res., 111, 99, 10.1016/j.marenvres.2015.06.010
Dalai, 2013, Acute toxicity of TiO 2 nanoparticles to Ceriodaphnia dubia under visible light and dark conditions in a freshwater system, PLoS One, 8, e62970, 10.1371/journal.pone.0062970
Eastman, 2001, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 718, 10.1063/1.1341218
Fiorentino, 2015, Influence of paints formulations on nanoparticles release during their life cycle, J. Nanopart. Res., 17, 1, 10.1007/s11051-015-2962-0
Gambardella, 2014, Effects of selected metal oxide nanoparticles on Artemia salina larvae: evaluation of mortality and behavioural and biochemical responses, Environ. Monit. Assess., 186, 4249, 10.1007/s10661-014-3695-8
Gomes, 2012, Accumulation and toxicity of copper oxide nanoparticles in the digestive gland of Mytilus galloprovincialis, Aquat. Toxicol., 118, 72, 10.1016/j.aquatox.2012.03.017
Habig, 1974, Glutathione S-transferases the first enzymatic step in mercapturic acid formation, J. Biol. Chem., 249, 7130, 10.1016/S0021-9258(19)42083-8
Heinlaan, 2011, Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: a transmission electron microscopy study, Water Res., 45, 179, 10.1016/j.watres.2010.08.026
Hotze, 2010, Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment, J. Environ. Qual., 39, 1909, 10.2134/jeq2009.0462
Hu, 2014, Toxicity of copper oxide nanoparticles in the blue mussel, Mytilus edulis: a redox proteomic investigation, Chemosphere, 108, 289, 10.1016/j.chemosphere.2014.01.054
Iswarya, 2016, Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels, Environ. Sci. Pollut. Res., 23, 4844, 10.1007/s11356-015-5683-0
Jemec, 2008, Biochemical biomarkers in chronically metal-stressed daphnids, Compar. Biochem. Physiol. Part C: Toxicol. Pharmacol., 147, 61
Jena, 2009, Application of oxidative stress indices in natural populations of Perna viridis as biomarker of environmental pollution, Mar. Pollut. Bull., 58, 107, 10.1016/j.marpolbul.2008.08.018
Jeong, 2015, Study on the catalytic activity of noble metal nanoparticles on reduced graphene oxide for oxygen evolution reactions in lithium–air batteries, Nano Lett., 15, 4261, 10.1021/nl504425h
Khare, 2015, Size dependent toxicity of zinc oxide nano-particles in soil nematode Caenorhabditis elegans, Nanotoxicology, 9, 423, 10.3109/17435390.2014.940403
Knapen, 1999, Glutathione and glutathione-related enzymes in reproduction: a review, Eur. J. Obstet. Gynecol. Reprod. Biol., 82, 171, 10.1016/S0301-2115(98)00242-5
Léger, 1986, The use and nutritional value of Artemia as a food source, Oceanogr. Mar. Biol. Ann. Rev, 24, 521
Lavens, 2000, The history, present status and prospects of the availability of Artemia cysts for aquaculture, Aquaculture, 181, 397, 10.1016/S0044-8486(99)00233-1
Li, 2012, Aggregation and dissolution of silver nanoparticles in natural surface water, Environ. Sci. Technol., 46, 5378, 10.1021/es204531y
Li, 2010, Dissolution-accompanied aggregation kinetics of silver nanoparticles, Langmuir, 26, 16690, 10.1021/la101768n
Ma, 2015, Effect of water vapor on Pd-loaded SnO2 nanoparticles gas sensor, ACS Appl. Mater. Interfaces, 7, 5863, 10.1021/am509082w
Manusadžianas, 2012, Toxicity of copper oxide nanoparticle suspensions to aquatic biota, Environ. Toxicol. Chem., 31, 108, 10.1002/etc.715
Maria, 2011, Antioxidant and lipid peroxidation responses in Mytilus galloprovincialis exposed to mixtures of benzo (a) pyrene and copper, Compar. Biochem. Physiol. Part C: Toxicol. Pharmacol., 154, 56
Melegari, 2013, Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii, Aquat. Toxicol., 142, 431, 10.1016/j.aquatox.2013.09.015
Mesarič, 2015, High surface adsorption properties of carbon-based nanomaterials are responsible for mortality, swimming inhibition, and biochemical responses in Artemia salina larvae, Aquat. Toxicol., 163, 121, 10.1016/j.aquatox.2015.03.014
Nithya, 2014, Preparation and characterization of copper oxide nanoparticles, Int. J. Chem. Tech. Res., 6, 2220
OECD Organisation for Economic Co-operation and Development), 1992
OECD, 2004
Ozkan, 2016, Determination of TiO2 and AgTiO2 nanoparticles in artemia salina: toxicity, morphological changes, uptake and depuration, Bull. Environ. Contam. Toxicol., 96, 36, 10.1007/s00128-015-1634-1
Palaniappan, 2010, FTIR study of the effect of nTiO 2 on the biochemical constituents of gill tissues of Zebrafish (Danio rerio), Food Chem. Toxicol., 48, 2337, 10.1016/j.fct.2010.05.068
Pendashteh, 2013, Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as supercapacitor, Electrochim. Acta, 88, 347, 10.1016/j.electacta.2012.10.088
Perreault, 2010, Evaluation of copper oxide nanoparticles toxicity using chlorophyll fluorescence imaging in Lemna gibba, J. Bot., 2010
Pflugmacher, 2001, Uptake effects, and metabolism of cyanobacterial toxins in the emergent reed plant Phragmites australis (cav.) trin. ex steud, Environ. Toxicol. Chem., 20, 846, 10.1002/etc.5620200421
Pretti, 2014, Ecotoxicity of pristine graphene to marine organisms, Ecotoxicol. Environ. Saf., 101, 138, 10.1016/j.ecoenv.2013.11.008
Rajasree, 2011, Assessment on the toxicity of engineered nanoparticles on the lifestages of marine aquatic invertebrate artemia salina, Int. J. Nanosci., 10, 1153, 10.1142/S0219581X11009428
Ren, 2009, Characterisation of copper oxide nanoparticles for antimicrobial applications, Int. J. Antimicrob. Agents, 33, 587, 10.1016/j.ijantimicag.2008.12.004
Saison, 2010, Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii, Aquat. Toxicol., 96, 109, 10.1016/j.aquatox.2009.10.002
Sedlak, 1968, Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman's reagent, Anal. Biochem., 25, 192, 10.1016/0003-2697(68)90092-4
Sevcikova, 2011, Metals as a cause of oxidative stress in fish: a review, Vet. Med., 56, 537, 10.17221/4272-VETMED
Soltanian, 2007
Sorgeloos, 1986
Sun, 2016, Effects of copper oxide nanoparticles on developing zebrafish embryos and larvae, Int. J. Nanomed., 11, 905
Tavana, 2014, Assessment of assimilation and elimination of silver and TiO2 nanoparticles in Artemia franciscana in different salinities, J. Oceanogr., 5, 91
Theodorakos, 2015, Selective laser sintering of Ag nanoparticles ink for applications in flexible electronics, Appl. Surf. Sci., 336, 157, 10.1016/j.apsusc.2014.10.120
Wang, 2016, Benzoic acid interactions affect aquatic properties and toxicity of copper oxide nanoparticles, Bull. Environ. Contam. Toxicol., 1
Wu, 2013, Comparison of toxicities from three metal oxide nanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans, Chemosphere, 90, 1123, 10.1016/j.chemosphere.2012.09.019
Yue, 2015, Toxicity of silver nanoparticles to a fish gill cell line: role of medium composition, Nanotoxicology, 9, 54, 10.3109/17435390.2014.889236
Zhang, 2006, Nearly monodisperse Cu2O and CuO nanospheres: preparation and applications for sensitive gas sensors, Chem. Mater., 18, 867, 10.1021/cm052256f
Zhang, 2009, Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles, Water Res., 43, 4249, 10.1016/j.watres.2009.06.005
Zhao, 2011, Distribution of CuO nanoparticles in juvenile carp (Cyprinus carpio) and their potential toxicity, J. Hazard. Mater., 197, 304, 10.1016/j.jhazmat.2011.09.094