Zone mapping application for precision-farming: a decision support tool for variable rate application
Tóm tắt
A web-based decision support tool, zone mapping application for precision farming (ZoneMAP,
http://zonemap.umac.org
), has been developed to automatically determine the optimal number of management zones and delineate them using satellite imagery and field data provided by users. Application rates, such as of fertilizer, can be prescribed for each zone and downloaded in a variety of formats to ensure compatibility with GPS-enabled farming equipment. ZoneMAP is linked to Digital Northern Great Plains, a web-based application which hosts an archive of satellite imagery, as well as high resolution imagery from airborne sensors. Management zones created by ZoneMAP mapped natural variation of the soil organic matter and other nutrients relatively well and were consistent with zone maps created by traditional means. The results demonstrated that ZoneMAP can serve as an effective and easy-to-use tool for those who practice precision agriculture.
Tài liệu tham khảo
Bégué, A., Todoroff, P., & Pater, J. (2008). Multi-time scale analysis of sugarcane within-field variability: Improved crop diagnosis using satellite time series. Precision Agriculture, 9, 161–171.
Bhatti, A. U., Mulla, D. J., & Frazier, B. E. (1991). Estimation of soil properties and wheat yields on complex eroded hills using geostatistics and thematic mapper images. Remote Sensing of Environment, 37, 181–191.
Brock, A., Brouder, S. M., Blumhoff, G., & Hofmann, B. S. (2005). Defining yield-based management zones for corn-soybean rotations. Agronomy Journal, 97, 1115–1128. doi:10.2134/agronj2004.0220.
Burrough, P. A. (1989). Fuzzy mathematical methods for soil survey and land evaluation. European Journal of Soil Science, 40, 477–492.
Burrough, P. A., MacMillan, R. A., & Deursen, W. V. (1992). Fuzzy classification methods for determining land suitability from soil profile observations and topography. European Journal of Soil Science, 43, 193–210.
Daniel, K. W., Tripathi, N. K., Honda, K., & Apisit, E. (2004). Analysis of VNIR (400–1100 nm) spectral signatures for estimation of soil organic matter in tropical soils of Thailand. International Journal of Remote Sensing, 25, 643–652.
Doraiswamy, P. C., Hatfield, J. L., Jackson, T. J., Akhmedov, B., Prueger, J., & Stern, A. (2004). Crop condition and yield simulations using Landsat and MODIS. Remote Sensing of Environment, 92, 548–559.
Doraiswamy, P. C., Moulin, S., Cook, P. W., & Stern, A. (2003). Crop yield assessment from remote sensing. Photogrammetric Engineering & Remote Sensing, 69, 665–674.
Fleming, K. L., Westfall, D. G., Wiens, D. W., & Brodahl, M. C. (2000). Evaluating farmer defined management zone maps for variable rate fertilizer application. Precision Agriculture, 2, 201–215.
Franzen, D. W., Hopkins, D. H., Sweeney, M. D., Ulmer, M. K., & Halvorson, A. D. (2002). Evaluation of soil survey scale for zone development of site-specific nitrogen management. Agronomy Journal, 94, 381–389.
Fridgen, J. J., Kitchen, N. R., Sudduth, K. A., Drummond, S. T., Wiebold, W. J., & Fraisse, C. W. (2004). Management zone analyst (MZA): Software for subfield management zone delineation. Agronomy Journal, 96, 100–108.
GDAL. (2009). http://www.gdal.org/. Accessed July 7, 2009.
Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58, 289–298.
Johnson, C. K., Mortensen, D. A., Wienhold, B. J., Shanahan, J. F., & Doran, J. W. (2003). Site-specific management zones based on soil electrical conductivity in a semiarid cropping system. Agronomy Journal, 95, 303–315.
Lark, R. M., & Stafford, J. V. (1997). Classification as a first step in the interpretation of temporal and spatial variation of crop yield. Annals of Applied Biology, 130, 111–121.
Metternicht, G. (2003). Vegetation indices derived from high-resolution airborne videography for precision crop management. International Journal of Remote Sensing, 24, 2855–2877.
Moran, M. S., Inoue, Y., & Barnes, E. M. (1997). Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sensing of Environment, 61, 319–346.
Moreenthaler, G. W., Khatib, N., & Kim, B. (2003). Incorporating a constrained optimization algorithm into remote sensing/precision agriculture methodology. Acta Astronautica, 53, 429–437.
Odeh, I. O. A., Chittleborough, D. J., & McBratney, A. B. (1992). Soil pattern recognition with fuzzy-c-means: Application to classification and soil-landform interrelationships. Soil Science Society of America Journal, 56, 505–516.
Read, J. J., Tarpley, L., McKinion, J. M., & Reddy, K. R. (2002). Narrow-waveband reflectance ratios for remote estimation of nitrogen status in cotton. Journal of Environmental Quality, 31, 1442–1452.
Rogovska, N., & Blackmer, A. (2009). Remote sensing of soybean canopy as a tool to map high pH, calcareous soils at field scale. Precision Agriculture, 10, 175–187.
Salisbury, J. W., & D’Aria, D. M. (1992). Infrared (8–14 μm) remote sensing of soil particle size. Remote Sensing of Environment, 42, 157–165.
Seelan, S. K., Laguette, S., Casady, G. M., & Seielstad, G. A. (2003). Remote sensing applications for precision agriculture: A learning community approach. Remote Sensing of Environment, 88, 157–169.
Sullivan, D. G., Shaw, J. N., & Rickman, D. (2005). IKONOS imagery to estimate surface soil property variability in two Alabama physiographies. Soil Science Society of America Journal, 69, 1789–1798. doi:10.2136/sssaj2005.0071.
Tucker, C. J., Holben, B. N., Elgin, J. H., Jr., & McMurtrey, J. E. (1980). Relationship of spectral data to grain yield variation. Photogrammetric Engineering & Remote Sensing, 46, 657–666.
Wetterlind, J., Stenberg, B., & Söderström, M. (2008). The use of near infrared (NIR) spectroscopy to improve soil mapping at the farm scale. Precision Agriculture, 9, 57–69.
Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—a worldwide overview. Computers and Electronics in Agriculture, 36, 113–132.