Electrochemical performance studies of MnO2 nanoflowers recovered from spent battery

Materials Research Bulletin - Tập 60 - Trang 5-9 - 2014
Gomaa A.M. Ali1,2, Ling Ling Tan3, Rajan Jose1, Mashitah M. Yusoff1, Kwok Feng Chong1
1Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang, 26300 Gambang, Kuantan, Pahang, Malaysia
2Chemistry Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
3Southeast Asia Disaster Prevention Research Initiative (SEADPRI-UKM), LESTARI, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

Tài liệu tham khảo

Michelis, 2007, Recovery of zinc and manganese from alkaline and zinc–carbon spent batteries, J. Power Sources, 172, 975, 10.1016/j.jpowsour.2007.04.092 Sayilgan, 2009, A review of technologies for the recovery of metals from spent alkaline and zinc–carbon batteries, Hydrometallurgy, 97, 158;1; Rácz, 2013, Electrolytic recovery of Mn3O4 and Zn from sulphuric acid leach liquors of spent zinc–carbon–MnO2 battery powder, Hydrometallurgy, 139, 116, 10.1016/j.hydromet.2013.08.006 Li, 2005, The dissolution mechanism of cathodic active materials of spent Zn–Mn batteries in HCl, J. Hazard. Mater., 127, 244, 10.1016/j.jhazmat.2005.07.024 Nan, 2006, Recycling spent zinc manganese dioxide batteries through synthesizing Zn–Mn ferrite magnetic materials, J. Hazard. Mater., 133, 257, 10.1016/j.jhazmat.2005.10.021 Salgado, 2003, Recovery of zinc and manganese from spent alkaline batteries by liquid–liquid extraction with Cyanex 272, J. Power Sources, 115, 367, 10.1016/S0378-7753(03)00025-9 Freitas, 2007, Recycling manganese from spent Zn–MnO2 primary batteries, J. Power Sources, 164, 947, 10.1016/j.jpowsour.2006.10.050 Ferella, 2008, Process for the recycling of alkaline and zinc–carbon spent batteries, J. Power Sources, 183, 805, 10.1016/j.jpowsour.2008.05.043 Bernardes, 2004, Recycling of batteries: a review of current processes and technologies, J. Power Sources, 130, 291, 10.1016/j.jpowsour.2003.12.026 Zhang, 2009, Progress of electrochemical capacitor electrodematerials: a review, Int. J. Hydrogen Energy, 34, 4889, 10.1016/j.ijhydene.2009.04.005 Qu, 1998, Studies of activated carbons used in double-layer capacitors, J. Power Sources, 74, 99, 10.1016/S0378-7753(98)00038-X Lota, 2011, Carbon nanotubes and their composites in electrochemical applications, Energy Environ. Sci., 4, 1592, 10.1039/c0ee00470g Zhu, 2011, Carbon-based supercapacitors produced by activation of graphene, Science, 332, 1537, 10.1126/science.1200770 Okajima, 2005, High rate performance of highly dispersed C60 on activated carbon capacitor, Electrochim. Acta, 51, 972, 10.1016/j.electacta.2005.04.055 Ponrouch, 2013, Ultra high capacitance values of Pt@RuO2 core–shell nanotubular electrodes for microsupercapacitor applications, J. Power Sources, 221, 228, 10.1016/j.jpowsour.2012.08.033 Wei, 2011, Manganese oxide-based materials as electrochemical supercapacitor electrodes, Chem. Soc. Rev., 40, 1697, 10.1039/C0CS00127A Kandalkar, 2011, Structural, morphological, and electrical characteristics of the electrodeposited cobalt oxide electrode for supercapacitor applications, Mater. Res. Bull., 46, 48, 10.1016/j.materresbull.2010.09.041 Wee, 2010, Synthesis and electrochemical properties of electrospun V2O5 nanofibers as supercapacitor electrodes, J. Mater. Chem., 20, 6720, 10.1039/c0jm00059k Xie, 2014, The effect of hydroquinone as an electrolyte additive on electrochemical performance of the polyaniline supercapacitor, Mater. Res. Bull., 50, 303, 10.1016/j.materresbull.2013.11.032 Sumboja, 2012, Nanoarchitectured current collector for high rate capability of polyaniline based supercapacitor electrode, Electrochim. Acta, 65, 190, 10.1016/j.electacta.2012.01.046 Pang, 2000, J. Electrochem. Soc., 147, 444, 10.1149/1.1393216 Toupin, 2004, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor, Chem. Mater., 16, 3184, 10.1021/cm049649j Duan, 2012, Controllable hydrothermal synthesis of manganese dioxide nanostructures: shape evolution, growth mechanism and electrochemical properties, CrystEngComm, 14, 4196, 10.1039/c2ce06587h Kim, 1999, Preparation of layered MnO2 via thermal decomposition of KMnO4 and its electrochemical characterizations, Chem. Mater., 11, 557, 10.1021/cm9801643 Tiano, 2010, Solution-based synthetic strategies for one-dimensional metal-containing nanostructures, Chem. Commun., 46, 8093, 10.1039/c0cc01735c Fukuda, 2009, One-step through mask electrodeposition of a porous structure composed of manganese oxide nanosheets with electrocatalytic activity for oxygen reduction, Mater. Res. Bull., 44, 1323, 10.1016/j.materresbull.2008.12.009 Ming, 2012, Microwave-hydrothermal synthesis of birnessite-type MnO2 nanospheres as supercapacitor electrode, J. Power Sources, 198, 428, 10.1016/j.jpowsour.2011.10.003 Jiang, 2011, Ultrafine manganese dioxide nanowire network for high-performance supercapacitors, Chem. Commun., 47, 1264, 10.1039/C0CC04134C Su, 2013, Hydrothermal synthesis of α-MnO2 and β-MnO2 nanorods as high capacity cathode materials for sodium ion batteries, J. Mater. Chem. A, 1, 4845, 10.1039/c3ta00031a Yang, 2010, Effect of synthetical conditions, morphology, and crystallographic structure of MnO2 on its electrochemical behavior, J. Solid State Electrochem., 14, 1293, 10.1007/s10008-009-0938-7 Jiang, 2012, Hierarchical porous nanostructures assembled from ultrathin MnO2 nanoflakes with enhanced supercapacitive performances, J. Mater. Chem., 22, 2751, 10.1039/C1JM14732C de Souza, 2004, Simultaneous recovery of zinc and manganese dioxide from household alkaline batteries through hydrometallurgical processing, J. Power Sources, 136, 191, 10.1016/j.jpowsour.2004.05.019 Thapa, 2014, Synthesis of mesoporous birnessite-MnO2 composite as a cathode electrode for lithium battery, Electrochim. Acta, 116, 188, 10.1016/j.electacta.2013.11.032 Yu, 2009, Preparation and pseudo-capacitance of birnessite-type MnO2 nanostructures via microwave-assisted emulsion method, Mater. Chem. Phys., 118, 303, 10.1016/j.matchemphys.2009.07.057 Patterson, 1939, The Scherrer formula for X-ray particle size determination, Phys. Rev., 56, 978, 10.1103/PhysRev.56.978 Gund, 2013, Enhanced activity of chemically synthesized hybrid grapheme oxide/Mn3O4 composite for high performance supercapacitors, Electrochim. Acta, 92, 205, 10.1016/j.electacta.2012.12.120 Ni, 2009, Low-temperature synthesis of monodisperse 3D manganese oxide nanoflowers and their pseudocapacitance properties, J. Phys. Chem. C, 113, 54, 10.1021/jp806454r Rakhi, 2011, Electrochemical energy storage devices using electrodes incorporating carbon nanocoils and metal oxides nanoparticles, J. Phys. Chem. C, 115, 14392, 10.1021/jp202519e Dubal, 2011, Effect of different modes of electrodeposition on supercapacitive properties of MnO2 thin films, Appl. Surf. Sci., 257, 3378, 10.1016/j.apsusc.2010.11.028 Yousefi, 2012, Template-free synthesis of MnO0 nanowires with secondary flower like structure: characterization and supercapacitor behavior studies, Curr. Appl. Phys., 12, 193, 10.1016/j.cap.2011.05.038 Dubal, 2013, Significant improvement in the electrochemical performances of nano–nest like amorphous MnO2 electrodes due to Fe doping, Ceram. Int., 39, 415, 10.1016/j.ceramint.2012.06.042 Zhou, 2004, Electrochemical capacitance of well-coated single-walled carbon nanotube with polyaniline composites, Electrochim. Acta, 49, 257, 10.1016/j.electacta.2003.08.007 Yuan, 2008, Interface synthesis of mesoporous MnO2 and its electrochemical capacitive behaviors, J. Colloid Interface Sci., 322, 545, 10.1016/j.jcis.2008.02.055