Convenient preparation of charge-adaptive chitosan nanomedicines for extended blood circulation and accelerated endosomal escape
Tóm tắt
Từ khóa
Tài liệu tham khảo
Yan, L. S.; Crayton, S. H.; Thawani, J. P.; Amirshaghaghi, A.; Tsourkas, A.; Cheng, Z. L. A pH-responsive drug-delivery platform based on glycol chitosan-coated liposomes. Small 2015, 11, 4870–4874.
Shi, G.-N.; Zhang, C.-N.; Xu, R.; Niu, J.-F.; Song, H.-J.; Zhang, X.-Y.; Wang, W.-W.; Wang, Y.-M.; Li, C.; Wei, X.-Q. et al. Enhanced antitumor immunity by targeting dendritic cells with tumor cell lysate-loaded chitosan nanoparticles vaccine. Biomaterials 2017, 113, 191–202.
Shen, B. B.; Ma, Y.; Yu, S. Y.; Ji, C. H. Smart multifunctional magnetic nanoparticle-based drug delivery system for cancer thermo-chemotherapy and intracellular imaging. ACS Appl. Mater. Interfaces 2016, 8, 24502–24508.
Richard, I.; Thibault, M.; De Crescenzo, G.; Buschmann, M. D.; Lavertu, M. Ionization behavior of chitosan and chitosan-DNA polyplexes indicate that chitosan has a similar capability to induce a proton-sponge effect as PEI. Biomacromolecules 2013, 14, 1732–1740.
Wu, Y. K.; Wu, J.; Cao, J.; Zhang, Y. J.; Xu, Z.; Qin, X. Y.; Wang, W.; Yuan, Z. Facile fabrication of poly(acrylic acid) coated chitosan nanoparticles with improved stability in biological environments. J. Pharmaceutics Biopharmaceutics 2017, 112, 148–154.
Xie, Y.; Qiao, H. Z.; Su, Z. G.; Chen, M. L.; Ping, Q. N.; Sun, M. J. PEGylated carboxymethyl chitosan/calcium phosphate hybrid anionic nanoparticles mediated hTERT siRNA delivery for anticancer therapy. Biomaterials 2014, 35, 7978–7991.
Zhang, L. L.; Liu, Y.; Liu, G.; Xu, D.; Liang, S.; Zhu, X. Y.; Lu, Y. F.; Wang, H. Prolonging the plasma circulation of proteins by nano-encapsulation with phosphorylcholine-based polymer. Nano Res. 2016, 9, 2424–2432.
Sheng, Y.; Liu, C. S.; Yuan, Y.; Tao, X. Y.; Yang, F.; Shan, X. Q.; Zhou, H. J.; Xu, F. Long-circulating polymeric nanoparticles bearing a combinatorial coating of PEG and water-soluble chitosan. Biomaterials 2009, 30, 2340–2348.
Piao, J. G.; Gao, F.; Li, Y. N.; Yu, L.; Liu, D.; Tan, Z. B.; Xiong, Y. J.; Yang, L. H.; You, Y. Z. pH-sensitive zwitterionic coating of gold nanocages improves tumor targeting and photothermal treatment efficacy. Nano Res., in press, DOI: 10.1007/s12274-017-1736-7.
Li, J. G.; Yu, X. S.; Wang, Y.; Yuan, Y. Y.; Xiao, H.; Cheng, D.; Shuai, X. T. A reduction and pH dual-sensitive polymeric vector for long-circulating and tumor-targeted siRNA delivery. Adv. Mater. 2014, 26, 8217–8224.
Zhang, K.; Jia, Y. G.; Tsai, I. H.; Strandman, S.; Ren, L.; Hong, L. Z.; Zhang, G. Z.; Guan, Y.; Zhang, Y. J.; Zhu, X. X. “Bitter-sweet” polymeric micelles formed by block copolymers from glucosamine and cholic acid. Biomacromolecules 2017, 18, 778–786.
Wang, S.; Zhang, L.; Dong, C. H.; Su, L.; Wang, H. J.; Chang, J. Smart pH-responsive upconversion nanoparticles for enhanced tumor cellular internalization and near-infrared light-triggered photodynamic therapy. Chem. Commun. 2015, 51, 406–408.
Yang, W.; Zhang, L.; Wang, S. L.; White, A. D.; Jiang, S. Y. Functionalizable and ultra stable nanoparticles coated with zwitterionic poly(carboxybetaine) in undiluted blood serum. Biomaterials 2009, 30, 5617–5621.
Jia, Y. G.; Zhu, X. X. Thermo- and pH-responsive copolymers bearing cholic acid and oligo(ethylene glycol) pendants: Self-assembly and pH-controlled release. ACS Appl. Mater. Interfaces 2015, 7, 24649–24655.
Hu, X. G.; Gao, X. H. Silica-polymer dual layer-encapsulated quantum dots with remarkable stability. ACS Nano 2010, 4, 6080–6086.
Liu, R. Y.; Li, Y.; Zhang, Z. Z.; Zhang, X. Drug carriers based on highly protein-resistant materials for prolonged in vivo circulation time. Regen. Biomater. 2015, 2, 125–133.
Kanamala, M.; Wilson, W. R.; Yang, M. M.; Palmer, B. D.; Wu, Z. M. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: A review. Biomaterials 2016, 85, 152–167.
Shen, T.; Guan, S. L.; Gan, Z. H.; Zhang, G.; Yu, Q. S. Polymeric micelles with uniform surface properties and tunable size and charge: Positive charges improve tumor accumulation. Biomacromolecules 2016, 17, 1801–1810.
Sun, M. J.; Li, J.; Zhang, C. T.; Xie, Y.; Qiao, H. Z.; Su, Z. G.; Oupický, D.; Ping, Q. N. Arginine-modified nanostructured lipid carriers with charge-reversal and pH-sensitive membranolytic properties for anticancer drug delivery. Adv. Healthc. Mater. 2017, 6, 1600693.
Ding, H.; Portilla-Arias, J.; Patil, R.; Black, K. L.; Ljubimova, J. Y.; Holler, E. The optimization of polymalic acid peptide copolymers for endosomolytic drug delivery. Biomaterials 2011, 32, 5269–5278.
Hühn, D.; Kantner, K.; Geidel, C.; Brandholt, S.; De Cock, I.; Soenen, S. J. H.; Riveragil, P.; Montenegro, J. M.; Braeckmans, K.; Müllen, K. et al. Polymer-coated nanoparticles interacting with proteins and cells: Focusing on the sign of the net charge. ACS Nano 2013, 7, 3253–3263.
Hu, D. D.; Xu, Z. P.; Hu, Z. Y.; Hu, B. H.; Yang, M. Y.; Zhu, L. J. pH-triggered charge-reversal silk sericin-based nanoparticles for enhanced cellular uptake and doxorubicin delivery. ACS Sustainble Chem. Eng. 2017, 5, 1638–1647.
Yan, X.; Yu, Q. S.; Guo, L. Y.; Guo, W. X.; Guan, S. L.; Tang, H.; Lin, S. S.; Gan, Z. H. Positively charged combinatory drug delivery systems against multi-drug-resistant breast cancer: Beyond the drug combination. ACS Appl. Mater. Interfaces 2017, 9, 6804–6815.
Qian, J.; Gao, X. H. Triblock copolymer-encapsulated nanoparticles with outstanding colloidal stability for siRNA delivery. ACS Appl. Mater. Interfaces 2013, 5, 2845–2852.
Hu, Y. C.; Gong, X.; Zhang, J. M.; Chen, F. Q.; Fu, C. M.; Li, P.; Zou, L.; Zhao, G. Activated charge-reversal polymeric nano-system: The promising strategy in drug delivery for cancer therapy. Polymers 2016, 8, 99.
Yuan, Y.Y.; Mao, C. Q.; Du, X. J.; Du, J. Z.; Wang, F.; Wang, J. Surface charge switchable nanoparticles based on zwitterionic polymer for enhanced drug delivery to tumor. Adv. Mater. 2012, 24, 5476–5480.
Chen, J. J.; Ding, J. X.; Wang, Y. C.; Cheng, J. J.; Ji, S. X. Zhuang, X, L. Chen, X. S. Sequentially responsive shellstacked nanoparticles for deep penetration into solid tumors. Adv. Mater. 2017, 29, 1701170.
Mo, R.; Sun, Q.; Xue, J. W.; Li, N.; Li, W. Y.; Zhang, C.; Ping, Q, N. Multistage pH-responsive liposomes for mitochondrial-targeted anticancer drug delivery. Adv. Mater. 2012, 24, 3659–3665.
Arnold, A. E.; Czupiel, P.; Shoichet, M. Engineered polymeric nanoparticles to guide the cellular internalization and trafficking of small interfering ribonucleic acids. J. Control. Release 2017, 259, 3–15.
Wang, F. H.; Zhang, W. J.; Shen, Y. Y.; Huang, Q.; Zhou, D. J.; Guo, S. R. Efficient RNA delivery by integrin-targeted glutathione responsive polyethyleneimine capped gold nanorods. Acta Biomater. 2015, 23, 136–146.
Chen, J. L.; Luo, J.; Zhao, Y.; Pu, L. Y.; Lu, X. J.; Gao, R.; Wang, G.; Gu, Z. W. Increase in transgene expression by pluronic L64-mediated endosomal/lysosomal escape through its membrane-disturbing action. ACS Appl. Mater. Interfaces 2015, 7, 7282–7293.
Dobay, M. P.; Schmidt, A.; Mendoza, E.; Bein, T.; Rädler, J. O. Cell type determines the light-induced endosomal escape kinetics of multifunctional mesoporous silica nanoparticles. Nano Lett. 2013, 13, 1047–1052.
Gu, W. Y.; Jia, Z. F.; Truong, N. P.; Prasadam, I.; Xiao, Y.; Monteiro, M. J. Polymer nanocarrier system for endosome escape and timed release of siRNA with complete gene silencing and cell death in cancer cells. Biomacromolecules 2013, 14, 3386–3389.
Gilleron, J.; Querbes, W.; Zeigerer, A.; Borodovsky, A.; Marsico, G.; Schubert, U.; Manygoats, K.; Seifert, S.; Andree, C.; Stöter, M. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 2013, 31, 638–646.
Leroueil, P. R.; Berry, S. A.; Duthie, K.; Han, G.; Rotello, V. M.; McNerny, D. Q.; Baker, J. R.; Orr, B. G.; Holl, M. M. B. Wide varieties of cationic nanoparticles induce defects in supported lipid bilayers. Nano Lett. 2008, 8, 420–424.
Bieber, T.; Meissner, W.; Kostin, S.; Niemann, A.; Elsasser, H. P. Intracellular route and transcriptional competence of polyethylenimine-DNA complexes. J. Control. Release 2002, 82, 441–454.
Wang, C. F.; Lin, Y. X.; Jiang, T.; He, F.; Zhuo, R. X. Polyethylenimine-grafted polycarbonates as biodegradable polycations for gene delivery. Biomaterials 2009, 30, 4824–4832.
Wen, Y. T.; Guo, Z. H.; Du, Z.; Fang, R.; Wu, H. M.; Zeng, X.; Wang, C.; Feng, M.; Pan, S. R. Serum tolerance and endosomal escape capacity of histidine-modified pDNAloaded complexes based on polyamidoamine dendrimer derivatives. Biomaterials 2012, 33, 8111–8121.
Roth, J. A.; Cristiano, R. J. Gene therapy for cancer: What have we done and where are we going? J. Natl. Cancer Inst. 1997, 89, 21–39.
Xu, Q. X.; Wang, C. H.; Pack, D. W. Polymeric carriers for gene delivery: Chitosan and poly(amidoamine) dendrimers. Curr. Pharmaceut. Des. 2010, 16, 2350–2368.
Tian, Q.; Zhang, C. N.; Wang, X. H.; Wang, W.; Huang, W.; Cha, R. T.; Wang, C. H.; Yuan, Z.; Liu, M.; Wan, H. Y. et al. Glycyrrhetinic acid-modified chitosan/poly(ethylene glycol) nanoparticles for liver-targeted delivery. Biomaterials 2010, 31, 4748–4756.
Lee, Y.; Miyata, K.; Oba, M.; Ishii, T.; Fukushima, S.; Han, M. R.; Koyama, H.; Nishiyama, N.; Kataoka, K. Chargeconversion ternary polyplex with endosome disruption moiety: A technique for efficient and safe gene delivery. Angew. Chem., Int. Ed. 2008, 47, 5163–5166.
Chung, M. F.; Liu, H. Y.; Lin, K. J.; Chia, W. T.; Sung, H. W. A pH-responsive carrier system that generates NO bubbles to trigger drug release and reverse P-glycoproteinmediated multidrug resistance. Angew. Chem., Int. Ed. 2015, 54, 9890–9893.
Wang, S. J.; Teng, Z. G.; Huang, P.; Liu, D. B.; Liu, Y.; Tian, Y.; Sun, J.; Li, Y. J.; Ju, H. X.; Chen, X. Y. et al. Reversibly extracellular pH controlled cellular uptake and photothermal therapy by PEGylated mixed-charge gold nanostars. Small 2015, 11, 1801–1810.
Ma, J. L.; Hu, Z. P.; Wang, W.; Wang, X. Y.; Wu, Q.; Yuan, Z. pH-sensitive reversible programmed targeting strategy by the self-assembly/disassembly of gold nanoparticles. ACS Appl. Mater. Interfaces 2017, 9, 16767–16777.
Wang, W. W.; Cheng, D.; Gong, F. M.; Miao, X. M.; Shuai, X. T. Design of multifunctional micelle for tumor-targeted intracellular drug release and fluorescent imaging. Adv. Mater. 2012, 24, 115–120.
Gao, M.; Fan, F.; Li, D. D.; Yu, Y.; Mao, K. R.; Sun, T. M.; Qian, H. S.; Tao, W.; Yang, X. Z. Tumor acidity-activatable TAT targeted nanomedicine for enlarged fluorescence/ magnetic resonance imaging-guided photodynamic therapy. Biomaterials 2017, 133, 165–175.
Wang, L.; Jia, X. H.; Liu, X. H.; Yuan, Z.; Huang, J. X. Synthesis and characterization of a functionalized amphiphilic diblock copolymer: MePEG-b-poly(DL-lactide-co-RS-ß-malic acid). Coll. Polym. Sci. 2006, 285, 273–281.
Roy, A.; Zhao, Y. C.; Yang, Y.; Szeitz, A.; Klassen, T.; Li, S. D. Selective targeting and therapy of metastatic and multidrug resistant tumors using a long circulating podophyllotoxin nanoparticle. Biomaterials 2017, 137, 11–22.
Verma, A.; Stellacci, F. Effect of surface properties on nanoparticle-cell interactions. Small 2010, 6, 12–21.
Zhang, X. J.; Chen, D. W.; Ba, S.; Zhu, J.; Zhang, J.; Hong, W.; Zhao, X. L.; Hu, H. Y.; Qiao, M. X. Poly(L-histidine) based triblock copolymers: pH induced reassembly of copolymer micelles and mechanism underlying endolysosomal escape for intracellular delivery. Biomacromolecules 2014, 15, 4032–4045.