Machine learning for survival analysis: a case study on recurrence of prostate cancer

Artificial Intelligence in Medicine - Tập 20 - Trang 59-75 - 2000
Blaž Zupan1,2,3, Janez Demšar1, Michael W Kattan4, J.Robert Beck3, I Bratko1,2
1Faculty of Computer and Information Science, University of Ljubljana, Tražaška 25, SI-1000 Ljubljana, Slovenia
2J. Stefan Institute, Ljubljana, Slovenia
3Baylor College of Medicine, Houston, TX, USA
4Memorial Sloan-Kettering Cancer Center, New York, NY, USA

Tài liệu tham khảo

Anand SS, Hughes JG, Bell DA, Hamilton PW. Using censored neighbours in prognostication. In: Working Notes of the AIMDM-99 Workshop on Prognostic Models in Medicine: Artificial Intelligence and Decision Analytic Approaches, Aalborg, Denmark, June 1999, pp. 15–19. Anand, 1999, An evaluation of intelligent prognostic systems for colorectal cancer, Artif. Intell. Med., 15, 193, 10.1016/S0933-3657(98)00052-9 Biganzoli E, Boracchi P, Mariani L, et al. Feed forward neural networks for the analysis of censored survival data: a partial logistic regression approach. Stat Med 1998. Burke, 1997, Artificial neural networks improve the accuracy of cancer survival prediction, Cancer, 97, 857, 10.1002/(SICI)1097-0142(19970215)79:4<857::AID-CNCR24>3.0.CO;2-Y Cestnik B, Bratko I. On estimating probabilities in tree pruning. In: Proc. European Working Session on Learning EWSL-91, 1991. Cox, 1972, Regression models and life-tables, J. R. Stat. Soc. B, 34, 187 D’Amico AV, Moul J, Kattan MW. Prognostic factors and outcomes. In: Vogelzang NJ, Scardino PT, Shipley WU, Coffey DS, editors. Comprehensive Textbook of Genitourinary Oncology. Lippincott William & Wilkins, Baltimore, MD, 2000 (in press). Faraggi, 1995, A neural network model for survival data, Stat. Med., 14, 73, 10.1002/sim.4780140108 Hanley, 1982, The meaning and use of the area under receiver operating characteristic curve, Radiology, 143, 29, 10.1148/radiology.143.1.7063747 Harrell, 1982, Evaluating the yield of medical tests, J. Am. Med. Assoc., 247, 2543, 10.1001/jama.1982.03320430047030 Kattan, 1998, A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer, J. Natl. Cancer Inst., 90, 766, 10.1093/jnci/90.10.766 Kattan, 1998, Experiments to determine whether recursive partitioning (cart) or an artificial neural network overcomes theoretical limitations of Cox proportional hazards regression, Comput. Biomed. Res., 31, 363, 10.1006/cbmr.1998.1488 Kattan, 1997, Applying a neural network to prostate cancer survival data, 295 Kattan, 1999, Postoperative nomogram for disease recurrence alter radical prostatectomy for prostate cancer, J. Clin. Oncol., 17, 1499, 10.1200/JCO.1999.17.5.1499 1997 Le, 1997 Lubsen, 1978, A practical device for the application of a diagnostic or prognostic function, Methods Inf. Med., 17, 127, 10.1055/s-0038-1636613 Lucas, 1999, Prognostic methods in medicine, Artif. Intell. Med., 15, 105, 10.1016/S0933-3657(98)00047-5 1994 Niblett T, Bratko I. Learning decision rules in noisy domains. In: Expert Systems 86 (ProcEWSL Brighton). Cambridge University Press, Cambridge, 1986, pp. 15–18. Quinlan, 1986, Induction of decision trees, Mach. Learn., 1, 81, 10.1007/BF00116251 Ripley BD, Ripley RM. Neural networks as statistical methods in survival analysis. In: Dybowski R, Gant V, editors. Artificial Neural Networks: Prospects for Medicine. Landes Biosciences, 1998. Snow, 1994, Artificial neural networks in the diagnosis and prognosis of prostate cancer: a pilot study, J. Urol., 152, 1923, 10.1016/S0022-5347(17)32416-3 Venables, 1997 Zupan B, Demšar J, Kattan MW, Beck JR, Bratko I. Machine learning for survival analysis: a case study on recurrence of prostate cancer. In: Horn W et al.. editors, AIMDM-99. Springer, 1999, pp. 346–355.