Dissolution Behavior of Iron and Steel Materials in Liquid Magnesium

Metallurgical and Materials Transactions B - Tập 49 - Trang 3432-3443 - 2018
Yu-ki Taninouchi1, Katsuhiro Nose1, Toru H. Okabe1
1Institute of Industrial Science, The University of Tokyo, Tokyo, Japan

Tóm tắt

The dissolution of metallic elements from Fe and steel materials into pure liquid Mg was investigated with the aim of improving control of impurities in Mg during processes such as Mg-alloy production and Ti smelting. Pure Mg was melted between 1073 and 1323 K (800 and 1050 °C) for 24 to 96 hours in closed crucibles made of pure Fe, low-carbon steel, or austenitic stainless steel SUS316. From the experiments using the pure Fe crucible, the relationship between the solubility of Fe in liquid Mg [Csol,Fe (mass pct)] and temperature [T (K)] was determined to be log(Csol,Fe) = − 3.67 × 103/T + 2.48 (± 0.06), from which the standard Gibbs energy of Fe dissolution in liquid Mg was evaluated. The amount of Fe dissolved from low-carbon steel was the same as that from pure Fe. From SUS316, not only Fe but also Cr and Ni dissolved into liquid Mg; the Fe and Cr concentrations in liquid Mg did not change significantly over time, whereas the Ni concentration increased monotonically. Preferential Ni dissolution resulted in a Ni-poor layer on the SUS316 surface. Finally, using the experimental data of Fe dissolution from low-carbon steel, the Fe contamination route in the current Ti smelting process, where a large amount of Mg is used as a reducing agent, is discussed.

Tài liệu tham khảo

H.E. Friedrich and B.L. Mordike, eds.: Magnesium Technology: Metallurgy, Design Data, Applications. Springer, Berlin, 2006. Roskill Information Services: Magnesium Metal: Global Industry, Markets & Outlook, 12th Edn, 2016, Roskill Information Services, London, 2016. AA Nayeb-Hashemi, JB Clark, LJ Swartzendruber (1985) Bull Alloy Phase Diagrams 6(3):235-238. F. Habashi, ed.: Handbook of Extractive Metallurgy, VCH Verlagsgesellschaft mbH, Weinheim, 1997. H. Kusamichi, J. Iseki, A. Moriya, A. Kanai, T. Nishimura, H. Kanayama, and T. Kusamichi: Titanium Industry in Japan and Its New Technologies, AGNE Gijutsu Center, Tokyo, 1996 (in Japanese). J.D. Hanawalt, C.E. Nelson, and J.A. Peloubet: Trans. AIME, 1942, vol. 147, pp. 273-299. ASTM Standards: ASTM B93/B93M-15. T. Suziki and T. Kaneko: The Latest Technological Trend of Rare Metals, CMC Publishing Co. Ltd., Tokyo, 2012, Chap. 6–4, pp. 117–27 (in Japanese). H. Okamoto (2000) J Phase Equilib 21(2): 209. A.A. Nayeb-Hashemi and J.B. Clark (1985) Bull Alloy Phase Diagrams 6(3): 238-244. 11. E. Fahrenhorst and W. Bulian: Zeitschrift für Metallkunde, 1941, vol. 33, pp. 31-34 (in German). K. Ono (1944) J Jpn Inst Met 8(9): 427-429. A. Beerwald: Metallwirtschaft, Metallwissenschaft, Metaltechnik, 1944, vol. 23, pp. 404-407 (in German). G. Siebel: Zeitschrift für Metallkunde, 1948, vol. 39, pp. 22-27 (in German). D.W. Mitchell: Trans. AIME, 1948, vol. 175, pp. 570-578. K. Schwerdtfeger, C.-T. Mutale, and A. Ditze: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 929-930. T. Haitani, Y. Tamura, T. Motegi, N. Kono, H. Tamehiro, and E. Sato (2002) J Jpn Inst Light Met, vol. 52(12), pp. 591-597 O. Kubaschewski: Iron-Binary Phase Diagrams, Springer, New York, 1982, pp. 59-60. J.L. Haughton and R.J. Payne: J. Inst. Met., 1934, vol. 54, pp. 275-283. Japanese Industrial Standards: JIS C 2504, 2000. Japanese Industrial Standards: JIS G 4051, 2016. Japanese Industrial Standards: JIS G 3131, 2011. Japanese Industrial Standards: JIS G 3454, 2012. Japanese Industrial Standards: JIS G 4305, 2012. Japanese Industrial Standards: JIS G 3459, 2016. I. Barin: Thermochemical Data of Pure Substances, 3rd ed., VCH Verlagsgesellschaft mbH, Weinheim, 1995.