Sparse signal reconstruction by swarm intelligence algorithms
Tài liệu tham khảo
Donoho, 2006, Compressed sensing, IEEE Trans. Inform. Theory, 52, 1289, 10.1109/TIT.2006.871582
Candes, 2006, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52, 489, 10.1109/TIT.2005.862083
Candès, 2008, The restricted isometry property and its implications for compressed sensing, C.R. Math., 346, 589, 10.1016/j.crma.2008.03.014
Sharma, 2016, Application of compressive sensing in cognitive radio communications: a survey, IEEE Commun. Surv. Tutorials, 18, 1838, 10.1109/COMST.2016.2524443
Otazo, 2015, Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components: L+S Reconstruction, Magn. Reson. Med., 73, 1125, 10.1002/mrm.25240
Liu, 2015, Compressive data collection for wireless sensor networks, IEEE Trans. Parallel Distrib. Syst., 26, 2188, 10.1109/TPDS.2014.2345257
Patel, 2010, Compressed synthetic aperture radar, IEEE J. Sel. Top. Signal Process., 4, 244, 10.1109/JSTSP.2009.2039181
T.T. Do, Yi Chen, D.T. Nguyen, N. Nguyen, L. Gan, T.D. Tran, Distributed compressed video sensing, in: 2009 16th IEEE Int. Conf. Image Process., IEEE, 2009: pp. 1393–1396. doi:10.1109/ICIP.2009.5414631.
Nagesh, 2009, A compressive sensing approach for expression-invariant face recognition, 1518
Lustig, 2008, Compressed Sensing MRI, IEEE Signal Process. Mag., 25, 72, 10.1109/MSP.2007.914728
Baraniuk, 2007, Compressive sensing [Lecture Notes], IEEE Signal Process. Mag., 24, 118, 10.1109/MSP.2007.4286571
Candes, 2008, An introduction to compressive sampling, IEEE Signal Process. Mag., 25, 21, 10.1109/MSP.2007.914731
Rani, 2018, A systematic review of compressive sensing: concepts, implementations and applications, IEEE Access, 6, 4875, 10.1109/ACCESS.2018.2793851
Shi, 2020, Image compressed sensing using convolutional neural network, IEEE Trans. Image Process., 29, 375, 10.1109/TIP.2019.2928136
S.G. Mallat, Zhifeng Zhang, Matching pursuits with time-frequency dictionaries, IEEE Trans. Signal Process. 41 (1993) 3397–3415. doi:10.1109/78.258082.
Chen, 1998, Atomic decomposition by basis pursuit, SIAM J. Sci. Comput., 20, 33, 10.1137/S1064827596304010
K.K. Herrity, A.C. Gilbert, J.A. Tropp, Sparse Approximation Via Iterative Thresholding, in: 2006 IEEE Int. Conf. Acoust. Speed Signal Process. Proc., IEEE, 2006: pp. III-624-III–627. doi:10.1109/ICASSP.2006.1660731.
Tropp, 2007, Signal recovery from random measurements via orthogonal matching pursuit, IEEE Trans. Inform. Theory, 53, 4655, 10.1109/TIT.2007.909108
Needell, 2009, CoSaMP: Iterative signal recovery from incomplete and inaccurate samples, Appl. Comput. Harmon. Anal., 26, 301, 10.1016/j.acha.2008.07.002
Blumensath, 2009, Iterative hard thresholding for compressed sensing, Appl. Comput. Harmon. Anal., 27, 265, 10.1016/j.acha.2009.04.002
Qaisar, 2013, Compressive sensing: from theory to applications, a survey, J. Commun. Networks., 15, 443, 10.1109/JCN.2013.000083
Xinpeng, 2013, A swarm intelligence algorithm for joint sparse recovery, IEEE Signal Process. Lett., 20, 611, 10.1109/LSP.2013.2260822
Fengmin, 2013, A hybrid simulated annealing thresholding algorithm for compressed sensing, Signal Process., 93, 1577, 10.1016/j.sigpro.2012.10.019
Liu, 2015, Nonconvex compressed sensing by nature-inspired optimization algorithms, IEEE Trans. Cybern., 45, 1042, 10.1109/TCYB.2014.2343618
J.A. Shah, I.M. Qureshi, A.A. Khaliq, H. Omer, Sparse Signal Recovery based on Hybrid Genetic Algorithm, 3 (2014) 86–93.
Lin, 2017, A local search enhanced differential evolutionary algorithm for sparse recovery, Appl. Soft Comput., 57, 144, 10.1016/j.asoc.2017.03.034
Li, 2014, An evolutionary multiobjective approach to sparse reconstruction, IEEE Trans. Evol. Comput., 18, 827, 10.1109/TEVC.2013.2287153
Du, 2014, A heuristic search algorithm for the multiple measurement vectors problem, Signal Process., 100, 1, 10.1016/j.sigpro.2014.01.002
Erkoc, 2019, Evolutionary algorithms for sparse signal reconstruction, Signal, Image Video Process., 13, 1293, 10.1007/s11760-019-01473-w
Lei, 2014, Multiscale reconstruction algorithm for compressed sensing, ISA Trans., 53, 1152, 10.1016/j.isatra.2014.05.001
Ghadyani, 2017, Adaptive joint sparse recovery algorithm based on Tabu Search, Neurocomputing., 224, 9, 10.1016/j.neucom.2016.10.056
M. Brajovi, S. Member, B. Lutovac, I. Orovi, Sparse Signal Recovery Based on Concentration Measures and Genetic Algorithm, in: 2016: pp. 1–4.
Li, 2016, A multi-phase multiobjective approach based on decomposition for sparse reconstruction, 601
Zhou, 2017, A Two-Phase Evolutionary Approach for Compressive Sensing Reconstruction, IEEE Trans. Cybern., 47, 2651, 10.1109/TCYB.2017.2679705
Zhao, 2018, Smoothing inertial projection neural network for minimization Lp−qin sparse signal reconstruction, Neural Networks, 99, 31, 10.1016/j.neunet.2017.12.008
Liu, 2016, L-1-minimization algorithms for sparse signal reconstruction based on a projection neural network, IEEE Trans. Neural Networks Learn. Syst., 27, 698, 10.1109/TNNLS.2015.2481006
Xu, 2018, A discrete-time projection neural network for sparse signal reconstruction with application to face recognition, IEEE Trans. Neural Networks Learn. Syst., 1
Mallat, 1993, Matching pursuits with time-frequency dictionaries, IEEE Trans. Signal Process., 41, 3397, 10.1109/78.258082
Donoho, 2008, Fast solution of L1-norm minimization problems when the solution may be sparse, IEEE Trans. Inf. Theory., 54, 4789, 10.1109/TIT.2008.929958
Tishbirani, 1996, Regression shrinkage and selection via the Lasso, J. R. Stat. Soc. Ser. B, 58, 267
Tibshirani, 2004, Least angle regression, Ann. Stat., 32, 407
D. Karaboga, An Idea Based on Honey Bee Swarm for Numerical Optimization, 2005. doi:citeulike-article-id:6592152.
Karaboga, 2010, Artificial bee colony algorithm, Scholarpedia, 5, 6915, 10.4249/scholarpedia.6915
Karaboga, 2007, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Glob. Optim., 39, 459, 10.1007/s10898-007-9149-x
Karaboga, 2008, On the performance of artificial bee colony (ABC) algorithm, Appl. Soft Comput., 8, 687, 10.1016/j.asoc.2007.05.007
J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. ICNN’95 – Int. Conf. Neural Networks, IEEE, 2006: pp. 1942–1948. doi: 10.1109/ICNN.1995.488968.
Poli, 2007, Particle swarm optimization, Swarm Intell., 1, 33, 10.1007/s11721-007-0002-0
Hayashi, 2013, A user’s guide to compressed sensing for communications systems, IEICE Trans. Commun., E96.B, 685, 10.1587/transcom.E96.B.685
l1-magic, (n.d.). https://statweb.stanford.edu/~candes/l1magic/.
Gan, 2007, Block compressed sensing of natural images, 403
Erkoc, 2017
Chakraborty, 2015, Evolutionary algorithm for compressive sensing, Int. J. Autom. Control., 9, 61, 10.1504/IJAAC.2015.068053
van den Berg, 2007
Feng, 2016, Multiple target localization in WSNs using compressed sensing reconstruction based on ABC algorithm, 59