Sparse signal reconstruction by swarm intelligence algorithms

Murat Emre Erkoç1, Nurhan Karaboğa1
1Electrical and Electronics Eng. Dep, Erciyes University, 38039 Kayseri, Turkey

Tài liệu tham khảo

Donoho, 2006, Compressed sensing, IEEE Trans. Inform. Theory, 52, 1289, 10.1109/TIT.2006.871582 Candes, 2006, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52, 489, 10.1109/TIT.2005.862083 Candès, 2008, The restricted isometry property and its implications for compressed sensing, C.R. Math., 346, 589, 10.1016/j.crma.2008.03.014 Sharma, 2016, Application of compressive sensing in cognitive radio communications: a survey, IEEE Commun. Surv. Tutorials, 18, 1838, 10.1109/COMST.2016.2524443 Otazo, 2015, Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components: L+S Reconstruction, Magn. Reson. Med., 73, 1125, 10.1002/mrm.25240 Liu, 2015, Compressive data collection for wireless sensor networks, IEEE Trans. Parallel Distrib. Syst., 26, 2188, 10.1109/TPDS.2014.2345257 Patel, 2010, Compressed synthetic aperture radar, IEEE J. Sel. Top. Signal Process., 4, 244, 10.1109/JSTSP.2009.2039181 T.T. Do, Yi Chen, D.T. Nguyen, N. Nguyen, L. Gan, T.D. Tran, Distributed compressed video sensing, in: 2009 16th IEEE Int. Conf. Image Process., IEEE, 2009: pp. 1393–1396. doi:10.1109/ICIP.2009.5414631. Nagesh, 2009, A compressive sensing approach for expression-invariant face recognition, 1518 Lustig, 2008, Compressed Sensing MRI, IEEE Signal Process. Mag., 25, 72, 10.1109/MSP.2007.914728 Baraniuk, 2007, Compressive sensing [Lecture Notes], IEEE Signal Process. Mag., 24, 118, 10.1109/MSP.2007.4286571 Candes, 2008, An introduction to compressive sampling, IEEE Signal Process. Mag., 25, 21, 10.1109/MSP.2007.914731 Rani, 2018, A systematic review of compressive sensing: concepts, implementations and applications, IEEE Access, 6, 4875, 10.1109/ACCESS.2018.2793851 Shi, 2020, Image compressed sensing using convolutional neural network, IEEE Trans. Image Process., 29, 375, 10.1109/TIP.2019.2928136 S.G. Mallat, Zhifeng Zhang, Matching pursuits with time-frequency dictionaries, IEEE Trans. Signal Process. 41 (1993) 3397–3415. doi:10.1109/78.258082. Chen, 1998, Atomic decomposition by basis pursuit, SIAM J. Sci. Comput., 20, 33, 10.1137/S1064827596304010 K.K. Herrity, A.C. Gilbert, J.A. Tropp, Sparse Approximation Via Iterative Thresholding, in: 2006 IEEE Int. Conf. Acoust. Speed Signal Process. Proc., IEEE, 2006: pp. III-624-III–627. doi:10.1109/ICASSP.2006.1660731. Tropp, 2007, Signal recovery from random measurements via orthogonal matching pursuit, IEEE Trans. Inform. Theory, 53, 4655, 10.1109/TIT.2007.909108 Needell, 2009, CoSaMP: Iterative signal recovery from incomplete and inaccurate samples, Appl. Comput. Harmon. Anal., 26, 301, 10.1016/j.acha.2008.07.002 Blumensath, 2009, Iterative hard thresholding for compressed sensing, Appl. Comput. Harmon. Anal., 27, 265, 10.1016/j.acha.2009.04.002 Qaisar, 2013, Compressive sensing: from theory to applications, a survey, J. Commun. Networks., 15, 443, 10.1109/JCN.2013.000083 Xinpeng, 2013, A swarm intelligence algorithm for joint sparse recovery, IEEE Signal Process. Lett., 20, 611, 10.1109/LSP.2013.2260822 Fengmin, 2013, A hybrid simulated annealing thresholding algorithm for compressed sensing, Signal Process., 93, 1577, 10.1016/j.sigpro.2012.10.019 Liu, 2015, Nonconvex compressed sensing by nature-inspired optimization algorithms, IEEE Trans. Cybern., 45, 1042, 10.1109/TCYB.2014.2343618 J.A. Shah, I.M. Qureshi, A.A. Khaliq, H. Omer, Sparse Signal Recovery based on Hybrid Genetic Algorithm, 3 (2014) 86–93. Lin, 2017, A local search enhanced differential evolutionary algorithm for sparse recovery, Appl. Soft Comput., 57, 144, 10.1016/j.asoc.2017.03.034 Li, 2014, An evolutionary multiobjective approach to sparse reconstruction, IEEE Trans. Evol. Comput., 18, 827, 10.1109/TEVC.2013.2287153 Du, 2014, A heuristic search algorithm for the multiple measurement vectors problem, Signal Process., 100, 1, 10.1016/j.sigpro.2014.01.002 Erkoc, 2019, Evolutionary algorithms for sparse signal reconstruction, Signal, Image Video Process., 13, 1293, 10.1007/s11760-019-01473-w Lei, 2014, Multiscale reconstruction algorithm for compressed sensing, ISA Trans., 53, 1152, 10.1016/j.isatra.2014.05.001 Ghadyani, 2017, Adaptive joint sparse recovery algorithm based on Tabu Search, Neurocomputing., 224, 9, 10.1016/j.neucom.2016.10.056 M. Brajovi, S. Member, B. Lutovac, I. Orovi, Sparse Signal Recovery Based on Concentration Measures and Genetic Algorithm, in: 2016: pp. 1–4. Li, 2016, A multi-phase multiobjective approach based on decomposition for sparse reconstruction, 601 Zhou, 2017, A Two-Phase Evolutionary Approach for Compressive Sensing Reconstruction, IEEE Trans. Cybern., 47, 2651, 10.1109/TCYB.2017.2679705 Zhao, 2018, Smoothing inertial projection neural network for minimization Lp−qin sparse signal reconstruction, Neural Networks, 99, 31, 10.1016/j.neunet.2017.12.008 Liu, 2016, L-1-minimization algorithms for sparse signal reconstruction based on a projection neural network, IEEE Trans. Neural Networks Learn. Syst., 27, 698, 10.1109/TNNLS.2015.2481006 Xu, 2018, A discrete-time projection neural network for sparse signal reconstruction with application to face recognition, IEEE Trans. Neural Networks Learn. Syst., 1 Mallat, 1993, Matching pursuits with time-frequency dictionaries, IEEE Trans. Signal Process., 41, 3397, 10.1109/78.258082 Donoho, 2008, Fast solution of L1-norm minimization problems when the solution may be sparse, IEEE Trans. Inf. Theory., 54, 4789, 10.1109/TIT.2008.929958 Tishbirani, 1996, Regression shrinkage and selection via the Lasso, J. R. Stat. Soc. Ser. B, 58, 267 Tibshirani, 2004, Least angle regression, Ann. Stat., 32, 407 D. Karaboga, An Idea Based on Honey Bee Swarm for Numerical Optimization, 2005. doi:citeulike-article-id:6592152. Karaboga, 2010, Artificial bee colony algorithm, Scholarpedia, 5, 6915, 10.4249/scholarpedia.6915 Karaboga, 2007, A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. Glob. Optim., 39, 459, 10.1007/s10898-007-9149-x Karaboga, 2008, On the performance of artificial bee colony (ABC) algorithm, Appl. Soft Comput., 8, 687, 10.1016/j.asoc.2007.05.007 J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. ICNN’95 – Int. Conf. Neural Networks, IEEE, 2006: pp. 1942–1948. doi: 10.1109/ICNN.1995.488968. Poli, 2007, Particle swarm optimization, Swarm Intell., 1, 33, 10.1007/s11721-007-0002-0 Hayashi, 2013, A user’s guide to compressed sensing for communications systems, IEICE Trans. Commun., E96.B, 685, 10.1587/transcom.E96.B.685 l1-magic, (n.d.). https://statweb.stanford.edu/~candes/l1magic/. Gan, 2007, Block compressed sensing of natural images, 403 Erkoc, 2017 Chakraborty, 2015, Evolutionary algorithm for compressive sensing, Int. J. Autom. Control., 9, 61, 10.1504/IJAAC.2015.068053 van den Berg, 2007 Feng, 2016, Multiple target localization in WSNs using compressed sensing reconstruction based on ABC algorithm, 59