The yeast Rat1 exonuclease promotes transcription termination by RNA polymerase II

Nature - Tập 432 Số 7016 - Trang 517-522 - 2004
Minkyu Kim1, Nevan J. Krogan2, Lidia Vasiljeva1, Oliver J. Rando3, Eduard Nedea2, Jack Greenblatt2, Stephen Buratowski1
1Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, , Boston, USA
2Banting and Best Department of Medical Research, University of Toronto, Toronto, Canada
3Bauer Center for Genomics Research, Harvard University, Cambridge, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Buratowski, S. The CTD code. Nature Struct. Biol. 10, 679–680 (2003)

Ahn, S. H., Kim, M. & Buratowski, S. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol. Cell 13, 67–76 (2004)

Birse, C. E., Minvielle-Sebastia, L., Lee, B. A., Keller, W. & Proudfoot, N. J. Coupling termination of transcription to messenger RNA maturation in yeast. Science 280, 298–301 (1998)

Kim, M., Ahn, S. H., Krogan, N. J., Greenblatt, J. F. & Buratowski, S. Transitions in RNA polymerase II elongation complexes at the 3′ ends of genes. EMBO J. 23, 354–364 (2004)

Connelly, S. & Manley, J. L. A CCAAT box sequence in the adenovirus major late promoter functions as part of an RNA polymerase II termination signal. Cell 57, 561–571 (1989)

Proudfoot, N. J. How RNA polymerase II terminates transcription in higher eukaryotes. Trends Biochem. Sci. 14, 105–110 (1989)

Scholes, D. T., Banerjee, M., Bowen, B. & Curcio, M. J. Multiple regulators of Ty1 transposition in Saccharomyces cerevisiae have conserved roles in genome maintenance. Genetics 159, 1449–1465 (2001)

Doerks, T., Copley, R. R., Schultz, J., Ponting, C. P. & Bork, P. Systematic identification of novel protein domain families associated with nuclear functions. Genome Res. 12, 47–56 (2002)

Meinhart, A. & Cramer, P. Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors. Nature 430, 223–226 (2004)

Tong, A. H. et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364–2368 (2001)

Sterner, D. E., Lee, J. M., Hardin, S. E. & Greenleaf, A. L. The yeast carboxyl-terminal repeat domain kinase CTDK-I is a divergent cyclin-cyclin-dependent kinase complex. Mol. Cell. Biol. 15, 5716–5724 (1995)

Skaar, D. A. & Greenleaf, A. L. The RNA polymerase II CTD kinase CTDK-I affects pre-mRNA 3′ cleavage/polyadenylation through the processing component Pti1p. Mol. Cell 10, 1429–1439 (2002)

Dheur, S. et al. Pti1p and Ref2p found in association with the mRNA 3′ end formation complex direct snoRNA maturation. EMBO J. 22, 2831–2840 (2003)

Nedea, E. et al. Organization and function of APT, a subcomplex of the yeast cleavage and polyadenylation factor involved in the formation of mRNA and small nucleolar RNA 3′-ends. J. Biol. Chem. 278, 33000–33010 (2003)

Petfalski, E., Dandekar, T., Henry, Y. & Tollervey, D. Processing of the precursors to small nucleolar RNAs and rRNAs requires common components. Mol. Cell. Biol. 18, 1181–1189 (1998)

Qu, L. H. et al. Seven novel methylation guide small nucleolar RNAs are processed from a common polycistronic transcript by Rat1p and RNase III in yeast. Mol. Cell. Biol. 19, 1144–1158 (1999)

Xue, Y. et al. Saccharomyces cerevisiae RAI1 (YGL246c) is homologous to human DOM3Z and encodes a protein that binds the nuclear exoribonuclease Rat1p. Mol. Cell. Biol. 20, 4006–4015 (2000)

Amberg, D. C., Goldstein, A. L. & Cole, C. N. Isolation and characterization of RAT1: an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA. Genes Dev. 6, 1173–1189 (1992)

Hammell, C. M. et al. Coupling of termination, 3′ processing, and mRNA export. Mol. Cell. Biol. 22, 6441–6457 (2002)

Vasudevan, S. & Peltz, S. W. Nuclear mRNA surveillance. Curr. Opin. Cell Biol. 15, 332–337 (2003)

Bousquet-Antonelli, C., Presutti, C. & Tollervey, D. Identification of a regulated pathway for nuclear pre-mRNA turnover. Cell 102, 765–775 (2000)

Das, B., Butler, J. S. & Sherman, F. Degradation of normal mRNA in the nucleus of Saccharomyces cerevisiae. Mol. Cell. Biol. 23, 5502–5515 (2003)

Yonaha, M. & Proudfoot, N. J. Transcriptional termination and coupled polyadenylation in vitro. EMBO J. 19, 3770–3777 (2000)

Holstege, F. C. et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95, 717–728 (1998)

Solinger, J. A., Pascolini, D. & Heyer, W. D. Active-site mutations in the Xrn1p exoribonuclease of Saccharomyces cerevisiae reveal a specific role in meiosis. Mol. Cell. Biol. 19, 5930–5942 (1999)

Ujvari, A., Pal, M. & Luse, D. S. RNA polymerase II transcription complexes may become arrested if the nascent RNA is shortened to less than 50 nucleotides. J. Biol. Chem. 277, 32527–32537 (2002)

West, S., Gromak, N. & Proudfoot, N. Human 5′ → 3′ exonuclease XRN2 promotes transcription termination from co-transcriptional cleavage sites. Nature doi:10.1038/nature03035 (this issue)

Krogan, N. J. et al. RNA polymerase II elongation factors of Saccharomyces cerevisiae: a targeted proteomics approach. Mol. Cell. Biol. 22, 6979–6992 (2002)

Zhao, J., Kessler, M., Helmling, S., O'Connor, J. P. & Moore, C. Pta1, a component of yeast CF II, is required for both cleavage and poly(A) addition of mRNA precursor. Mol. Cell. Biol. 19, 7733–7740 (1999)

Lashkari, D. A. et al. Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc. Natl Acad. Sci. USA 94, 13057–13062 (1997)