The many faces of circle orders

Order - Tập 9 - Trang 343-348 - 1992
Edward R. Scheinerman1
1Department of Mathematical Sciences, The Johns Hopkins University, Baltimore, USA

Tóm tắt

A finite partially ordered set P is called a circle order if one can assign to each x ∈ P a circular disk C x so that x≤y iff C x $$ \subseteq $$ C y . It is interesting to observe that many other classes of posets, such as space-time orders, parabola orders, the Loewner order for 2×2 Hermitian matrices, etc. turn out to be exactly circle orders (or their higher dimensional analogues). We give a “global” proof for these equivalences.

Tài liệu tham khảo

Alon, N. and E. R. Scheinerman, Degrees of freedom versus dimension for containment orders, Order 5 (1988), 11–16. Brightwell, G. and R. Gregory, The structure of discrete space-time, Phys. Rev. Lett. 66 (1991), 260–263. Brightwell, G. and E. R. Scheinerman, The dual of a circle order is not necessarily a circle order, submitted. Brightwell, G. and E. R. Scheinerman, Representations of planar graphs, SIAM J. Discr. Math., to appear. Brightwell, G. and P. Winkler, Sphere orders, Order 6 (1989), 323–343. Fishburn, P. C., Interval orders and circle orders, Order 5 (1988), 225–234. Fishburn, P. C. and W. T. Trotter, Angle orders, Order 1 (1985), 333–343. Hill, R. D. and S. R. Waters, On the cone of positive semidefinite matrices, Linear Algebra and Its Applications 90 (1987), 81–88. Hurlbert, G. H., A short proof that N3 is not a circle containment order, Order 5 (1988), 235–237. Löwner, K., Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177–216. Mathias, R., The equivalence of two partial orders on a convex cone of positive semidefinite matrices, Linear Algebra and Its Applications 151 (1991), 27–55. Meyer, D., The dimension of causal sets I: Minkowski dimension, Syracuse University Preprint (1988). Meyer, D., The dimension of causal sets II: Hausdorff dimension, Syracuse University Preprint (1988). Santoro, N. and J. Urrutia, Angle orders, regular n-gon orders and the crossing number, Order 4 (1987), 209–220. Scheinerman, E. R., A note on planar graphs and circle orders, SIAM J. Discr. Math. 4 (1991), 448–451. Scheinerman, E. R., A note on graphs and sphere orders, J. Graph Theory, to appear. Scheinerman, E. R. and J. C. Wierman, On circle containment orders, Order 4 (1988), 315–318. Sidney, J. B., S. J. Sidney, and J. Urrutia, Circle orders, N-gon orders and the crossing number of partial orders, Order 5 (1988), 1–10. Urrutia, J., Partial orders and Euclidean geometry, in Algorithms and Order, I. Rival, ed. (1987), 387–434.