Preparation, characterization, and determination of mechanical and thermal stability of natural zeolite-based foamed geopolymers
Tài liệu tham khảo
Masi, 2014, A comparison between different foaming methods for the synthesis of light weight geopolymers, Ceram. Int., 40, 13891, 10.1016/j.ceramint.2014.05.108
Łach, 2016, Thermal Insulation and Thermally Resistant Materials Made of Geopolymer Foams, Procedia Eng., 151, 410, 10.1016/j.proeng.2016.07.350
Tashima, 2012, New geopolymeric binder based on fluid catalytic cracking catalyst residue (FCC), Mater. Lett., 10.1016/j.matlet.2012.04.051
Liu, 2014, Fabrication and properties of foam geopolymer using circulating fluidized bed combustion fly ash, Int. J. Miner. Metall. Mater., 21, 89, 10.1007/s12613-014-0870-4
Provis, 2009
Bondar, 2013, Alkali-activated natural pozzolan concrete as new construction material, ACI Mater. J., 110, 331
Onisei, 2012, Synthesis of inorganic polymers using fly ash and primary lead slag, J. Hazard. Mater., 205–206, 101, 10.1016/j.jhazmat.2011.12.039
Hajimohammadi, 2017, Regulating the chemical foaming reaction to control the porosity of geopolymer foams, Mater. Des., 120, 255, 10.1016/j.matdes.2017.02.026
Zhang, 2017, Novel sustainable geopolymer based syntactic foams: An eco-friendly alternative to polymer based syntactic foams, Chem. Eng. J., 313, 74, 10.1016/j.cej.2016.12.046
Zhang, 2014, Geopolymer foam concrete: An emerging material for sustainable construction, Constr. Build. Mater., 56, 113, 10.1016/j.conbuildmat.2014.01.081
Zhang, 2016, Applied Clay Science Geopolymer from kaolin in China : An overview, Appl. Clay Sci., 119, 31, 10.1016/j.clay.2015.04.023
Baykara, 2017, Preparation, characterization and reaction kinetics of green cement: Ecuadorian natural mordenite-based geopolymers, Mater. Struct., 50, 188, 10.1617/s11527-017-1057-z
ASTM C305, Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency, 2011. doi:10.1520/C0305-13.2.
Ducman, 2016, Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents, Mater. Charact., 113, 207, 10.1016/j.matchar.2016.01.019
Hajimohammadi, 2017, Pore characteristics in one-part mix geopolymers foamed by H2O2: the impact of mix design, Mater. Des., 130, 381, 10.1016/j.matdes.2017.05.084
ASTM C109/C109M-02, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), West Conshohocken, PA, 2002. doi:10.1520/C0109_C0109M-02.
Instituto Ecuatoriano de Normalización, NTE INEN 643 Bloques huecos de hormigón, (2014) 3. http://www.normalizacion.gob.ec/wp-content/uploads/downloads/2014/02/nte_inen_643.pdf.
INEN, Bloques Huecos De Hormigón. Definiciones, Clasificación Y Condiciones Generales. Nte Inen 638:2014, (2014) 2–3. http://www.inen.gob.ec.
Bokhimi, 1997, Rietveld refinement of nanocrystalline phases, Nanostruct. Mater., 9, 315, 10.1016/S0965-9773(97)90072-6
Richardson, 1992, Structure determination and rietveld refinement of aluminophosphate molecular sieve AIPO4-8, Zeolites, 12, 13, 10.1016/0144-2449(92)90003-8
Hajimohammadi, 2017, How does aluminium foaming agent impact the geopolymer formation mechanism?, Cem. Concr. Compos., 80, 277, 10.1016/j.cemconcomp.2017.03.022
Kuenzel, 2012, Ambient temperature drying shrinkage and cracking in metakaolin-based geopolymers, J. Am. Ceram. Soc., 95, 3270, 10.1111/j.1551-2916.2012.05380.x
Nath, 2016, Microstructural and morphological evolution of fly ash based geopolymers, Constr. Build. Mater., 111, 758, 10.1016/j.conbuildmat.2016.02.106
Duxson, 2007, Physical evolution of Na-geopolymer derived from metakaolin up to 1000 °C, J. Mater. Sci., 42, 3044, 10.1007/s10853-006-0535-4
Chindaprasirt, 2010, Utilization of blended fluidized bed combustion (FBC) ash and pulverized coal combustion (PCC) fly ash in geopolymer, Waste Manag., 30, 667, 10.1016/j.wasman.2009.09.040
Dong, 2014, Study on the strength development, hydration process and carbonation process of NaOH-activated Pisha Sandstone, Constr. Build. Mater., 66, 154, 10.1016/j.conbuildmat.2014.05.075
Ferone, 2013, Application-oriented chemical optimization of a metakaolin based geopolymer, Materials (Basel)., 6, 1920, 10.3390/ma6051920
Abdel-Gawwad, 2014, A novel method to produce dry geopolymer cement powder, HBRC J., 12, 13, 10.1016/j.hbrcj.2014.06.008
Avila-López, 2015, Investigation of novel waste glass and limestone binders using statistical methods, Constr. Build. Mater., 82, 296, 10.1016/j.conbuildmat.2015.02.085
Ismail, 2012, Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure, Mater. Struct., 46, 361, 10.1617/s11527-012-9906-2
Guo, 2010, Compressive strength and microstructural characteristics of class C fly ash geopolymer, Cem. Concr. Compos., 32, 142, 10.1016/j.cemconcomp.2009.11.003
Al Bakri Abdullah, 2012, Fly ash-based geopolymer lightweight concrete using foaming agent, Int. J. Mol. Sci., 13, 7186, 10.3390/ijms13067186
Álvarez-Ayuso, 2008, Environmental, physical and structural characterisation of geopolymer matrixes synthesised from coal (co-)combustion fly ashes, J. Hazard. Mater., 154, 175, 10.1016/j.jhazmat.2007.10.008
Panias, 2007, Effect of synthesis parameters on the mechanical properties of fly ash-based geopolymers, Colloids Surfaces A Physicochem. Eng. Asp., 301, 246, 10.1016/j.colsurfa.2006.12.064
Provis, 2005, Do geopolymers actually contain nanocrystalline zeolites? a reexamination of existing results, Chem. Mater., 17, 3075, 10.1021/cm050230i
Subaer, 2016, The Influence of Si : Al and Na : Al On The Physical and Microstructure Characters of Geopolymers Based on Metakaolin, Mater. Sci. Forum, 841, 1, 10.4028/www.scientific.net/MSF.841.170
Komnitsas, 2007, Geopolymerisation of low calcium ferronickel slags, J. Mater. Sci., 42, 3073, 10.1007/s10853-006-0529-2
Tyni, 2014, Preparation and characterization of amorphous aluminosilicate polymers from ash formed in combustion of peat and wood mixtures, J. Non. Cryst. Solids., 387, 94, 10.1016/j.jnoncrysol.2013.12.032
Kamseu, 2012, Bulk composition and microstructure dependence of effective thermal conductivity of porous inorganic polymer cements, J. Eur. Ceram. Soc., 32, 1593, 10.1016/j.jeurceramsoc.2011.12.030
Duke, 1961, The homogeneous base-catalyzed decomposition of hydrogen peroxide1, J. Phys. Chem., 65, 304, 10.1021/j100820a028
Mitsoulis, 2007, Annular extrudate swell of pseudoplastic and viscoplastic fluids, J. Nonnewton. Fluid Mech., 141, 138, 10.1016/j.jnnfm.2006.10.004
Rattanasak, 2009, Influence of NaOH solution on the synthesis of fly ash geopolymer, Miner. Eng., 22, 1073, 10.1016/j.mineng.2009.03.022
de Vargas, 2014, Strength development of alkali-activated fly ash produced with combined NaOH and Ca(OH)2 activators, Cem. Concr. Compos., 53, 341, 10.1016/j.cemconcomp.2014.06.012
Rees, 2007, Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging, Langmuir, 23, 8170, 10.1021/la700713g
Loftus, 2015, A simple method to establish calcite: Aragonite ratios in archaeological mollusc shells, J. Quat. Sci., 30, 731, 10.1002/jqs.2819
Abdollahnejad, 2015, Mix design, properties and cost analysis of fly ash-based geopolymer foam, Constr. Build. Mater., 80, 18, 10.1016/j.conbuildmat.2015.01.063
Criado, 2005, Alkali activation of fly ashes. Part 1: Effect of curing conditions on the carbonation of the reaction products, Fuel, 84, 2048, 10.1016/j.fuel.2005.03.030